ibrim commited on
Commit
82b9dd4
1 Parent(s): 85b913f

Upload 22 files

Browse files
models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # init
models/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (165 Bytes). View file
 
models/__pycache__/common.cpython-38.pyc ADDED
Binary file (51.5 kB). View file
 
models/__pycache__/experimental.cpython-38.pyc ADDED
Binary file (4.73 kB). View file
 
models/__pycache__/yolo.cpython-38.pyc ADDED
Binary file (33 kB). View file
 
models/common.py ADDED
@@ -0,0 +1,1200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import contextlib
3
+ import json
4
+ import math
5
+ import platform
6
+ import warnings
7
+ import zipfile
8
+ from collections import OrderedDict, namedtuple
9
+ from copy import copy
10
+ from pathlib import Path
11
+ from urllib.parse import urlparse
12
+
13
+ from typing import Optional
14
+
15
+ import cv2
16
+ import numpy as np
17
+ import pandas as pd
18
+ import requests
19
+ import torch
20
+ import torch.nn as nn
21
+ from IPython.display import display
22
+ from PIL import Image
23
+ from torch.cuda import amp
24
+
25
+ from utils import TryExcept
26
+ from utils.dataloaders import exif_transpose, letterbox
27
+ from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
28
+ increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes,
29
+ xywh2xyxy, xyxy2xywh, yaml_load)
30
+ from utils.plots import Annotator, colors, save_one_box
31
+ from utils.torch_utils import copy_attr, smart_inference_mode
32
+
33
+
34
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
35
+ # Pad to 'same' shape outputs
36
+ if d > 1:
37
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
38
+ if p is None:
39
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
40
+ return p
41
+
42
+
43
+ class Conv(nn.Module):
44
+ # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
45
+ default_act = nn.SiLU() # default activation
46
+
47
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
48
+ super().__init__()
49
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
50
+ self.bn = nn.BatchNorm2d(c2)
51
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
52
+
53
+ def forward(self, x):
54
+ return self.act(self.bn(self.conv(x)))
55
+
56
+ def forward_fuse(self, x):
57
+ return self.act(self.conv(x))
58
+
59
+
60
+ class AConv(nn.Module):
61
+ def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
62
+ super().__init__()
63
+ self.cv1 = Conv(c1, c2, 3, 2, 1)
64
+
65
+ def forward(self, x):
66
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
67
+ return self.cv1(x)
68
+
69
+
70
+ class ADown(nn.Module):
71
+ def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
72
+ super().__init__()
73
+ self.c = c2 // 2
74
+ self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
75
+ self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
76
+
77
+ def forward(self, x):
78
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
79
+ x1,x2 = x.chunk(2, 1)
80
+ x1 = self.cv1(x1)
81
+ x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
82
+ x2 = self.cv2(x2)
83
+ return torch.cat((x1, x2), 1)
84
+
85
+
86
+ class RepConvN(nn.Module):
87
+ """RepConv is a basic rep-style block, including training and deploy status
88
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
89
+ """
90
+ default_act = nn.SiLU() # default activation
91
+
92
+ def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
93
+ super().__init__()
94
+ assert k == 3 and p == 1
95
+ self.g = g
96
+ self.c1 = c1
97
+ self.c2 = c2
98
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
99
+
100
+ self.bn = None
101
+ self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
102
+ self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
103
+
104
+ def forward_fuse(self, x):
105
+ """Forward process"""
106
+ return self.act(self.conv(x))
107
+
108
+ def forward(self, x):
109
+ """Forward process"""
110
+ id_out = 0 if self.bn is None else self.bn(x)
111
+ return self.act(self.conv1(x) + self.conv2(x) + id_out)
112
+
113
+ def get_equivalent_kernel_bias(self):
114
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
115
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
116
+ kernelid, biasid = self._fuse_bn_tensor(self.bn)
117
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
118
+
119
+ def _avg_to_3x3_tensor(self, avgp):
120
+ channels = self.c1
121
+ groups = self.g
122
+ kernel_size = avgp.kernel_size
123
+ input_dim = channels // groups
124
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
125
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
126
+ return k
127
+
128
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
129
+ if kernel1x1 is None:
130
+ return 0
131
+ else:
132
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
133
+
134
+ def _fuse_bn_tensor(self, branch):
135
+ if branch is None:
136
+ return 0, 0
137
+ if isinstance(branch, Conv):
138
+ kernel = branch.conv.weight
139
+ running_mean = branch.bn.running_mean
140
+ running_var = branch.bn.running_var
141
+ gamma = branch.bn.weight
142
+ beta = branch.bn.bias
143
+ eps = branch.bn.eps
144
+ elif isinstance(branch, nn.BatchNorm2d):
145
+ if not hasattr(self, 'id_tensor'):
146
+ input_dim = self.c1 // self.g
147
+ kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
148
+ for i in range(self.c1):
149
+ kernel_value[i, i % input_dim, 1, 1] = 1
150
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
151
+ kernel = self.id_tensor
152
+ running_mean = branch.running_mean
153
+ running_var = branch.running_var
154
+ gamma = branch.weight
155
+ beta = branch.bias
156
+ eps = branch.eps
157
+ std = (running_var + eps).sqrt()
158
+ t = (gamma / std).reshape(-1, 1, 1, 1)
159
+ return kernel * t, beta - running_mean * gamma / std
160
+
161
+ def fuse_convs(self):
162
+ if hasattr(self, 'conv'):
163
+ return
164
+ kernel, bias = self.get_equivalent_kernel_bias()
165
+ self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
166
+ out_channels=self.conv1.conv.out_channels,
167
+ kernel_size=self.conv1.conv.kernel_size,
168
+ stride=self.conv1.conv.stride,
169
+ padding=self.conv1.conv.padding,
170
+ dilation=self.conv1.conv.dilation,
171
+ groups=self.conv1.conv.groups,
172
+ bias=True).requires_grad_(False)
173
+ self.conv.weight.data = kernel
174
+ self.conv.bias.data = bias
175
+ for para in self.parameters():
176
+ para.detach_()
177
+ self.__delattr__('conv1')
178
+ self.__delattr__('conv2')
179
+ if hasattr(self, 'nm'):
180
+ self.__delattr__('nm')
181
+ if hasattr(self, 'bn'):
182
+ self.__delattr__('bn')
183
+ if hasattr(self, 'id_tensor'):
184
+ self.__delattr__('id_tensor')
185
+
186
+
187
+ class SP(nn.Module):
188
+ def __init__(self, k=3, s=1):
189
+ super(SP, self).__init__()
190
+ self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
191
+
192
+ def forward(self, x):
193
+ return self.m(x)
194
+
195
+
196
+ class MP(nn.Module):
197
+ # Max pooling
198
+ def __init__(self, k=2):
199
+ super(MP, self).__init__()
200
+ self.m = nn.MaxPool2d(kernel_size=k, stride=k)
201
+
202
+ def forward(self, x):
203
+ return self.m(x)
204
+
205
+
206
+ class ConvTranspose(nn.Module):
207
+ # Convolution transpose 2d layer
208
+ default_act = nn.SiLU() # default activation
209
+
210
+ def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
211
+ super().__init__()
212
+ self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
213
+ self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
214
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
215
+
216
+ def forward(self, x):
217
+ return self.act(self.bn(self.conv_transpose(x)))
218
+
219
+
220
+ class DWConv(Conv):
221
+ # Depth-wise convolution
222
+ def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
223
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
224
+
225
+
226
+ class DWConvTranspose2d(nn.ConvTranspose2d):
227
+ # Depth-wise transpose convolution
228
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
229
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
230
+
231
+
232
+ class DFL(nn.Module):
233
+ # DFL module
234
+ def __init__(self, c1=17):
235
+ super().__init__()
236
+ self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
237
+ self.conv.weight.data[:] = nn.Parameter(torch.arange(c1, dtype=torch.float).view(1, c1, 1, 1)) # / 120.0
238
+ self.c1 = c1
239
+ # self.bn = nn.BatchNorm2d(4)
240
+
241
+ def forward(self, x):
242
+ b, c, a = x.shape # batch, channels, anchors
243
+ return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
244
+ # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
245
+
246
+
247
+ class BottleneckBase(nn.Module):
248
+ # Standard bottleneck
249
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(1, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
250
+ super().__init__()
251
+ c_ = int(c2 * e) # hidden channels
252
+ self.cv1 = Conv(c1, c_, k[0], 1)
253
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
254
+ self.add = shortcut and c1 == c2
255
+
256
+ def forward(self, x):
257
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
258
+
259
+
260
+ class RBottleneckBase(nn.Module):
261
+ # Standard bottleneck
262
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
263
+ super().__init__()
264
+ c_ = int(c2 * e) # hidden channels
265
+ self.cv1 = Conv(c1, c_, k[0], 1)
266
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
267
+ self.add = shortcut and c1 == c2
268
+
269
+ def forward(self, x):
270
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
271
+
272
+
273
+ class RepNRBottleneckBase(nn.Module):
274
+ # Standard bottleneck
275
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
276
+ super().__init__()
277
+ c_ = int(c2 * e) # hidden channels
278
+ self.cv1 = RepConvN(c1, c_, k[0], 1)
279
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
280
+ self.add = shortcut and c1 == c2
281
+
282
+ def forward(self, x):
283
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
284
+
285
+
286
+ class Bottleneck(nn.Module):
287
+ # Standard bottleneck
288
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
289
+ super().__init__()
290
+ c_ = int(c2 * e) # hidden channels
291
+ self.cv1 = Conv(c1, c_, k[0], 1)
292
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
293
+ self.add = shortcut and c1 == c2
294
+
295
+ def forward(self, x):
296
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
297
+
298
+
299
+ class RepNBottleneck(nn.Module):
300
+ # Standard bottleneck
301
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
302
+ super().__init__()
303
+ c_ = int(c2 * e) # hidden channels
304
+ self.cv1 = RepConvN(c1, c_, k[0], 1)
305
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
306
+ self.add = shortcut and c1 == c2
307
+
308
+ def forward(self, x):
309
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
310
+
311
+
312
+ class Res(nn.Module):
313
+ # ResNet bottleneck
314
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
315
+ super(Res, self).__init__()
316
+ c_ = int(c2 * e) # hidden channels
317
+ self.cv1 = Conv(c1, c_, 1, 1)
318
+ self.cv2 = Conv(c_, c_, 3, 1, g=g)
319
+ self.cv3 = Conv(c_, c2, 1, 1)
320
+ self.add = shortcut and c1 == c2
321
+
322
+ def forward(self, x):
323
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
324
+
325
+
326
+ class RepNRes(nn.Module):
327
+ # ResNet bottleneck
328
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
329
+ super(RepNRes, self).__init__()
330
+ c_ = int(c2 * e) # hidden channels
331
+ self.cv1 = Conv(c1, c_, 1, 1)
332
+ self.cv2 = RepConvN(c_, c_, 3, 1, g=g)
333
+ self.cv3 = Conv(c_, c2, 1, 1)
334
+ self.add = shortcut and c1 == c2
335
+
336
+ def forward(self, x):
337
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
338
+
339
+
340
+ class BottleneckCSP(nn.Module):
341
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
342
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
+ super().__init__()
344
+ c_ = int(c2 * e) # hidden channels
345
+ self.cv1 = Conv(c1, c_, 1, 1)
346
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
347
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
348
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
349
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
350
+ self.act = nn.SiLU()
351
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
352
+
353
+ def forward(self, x):
354
+ y1 = self.cv3(self.m(self.cv1(x)))
355
+ y2 = self.cv2(x)
356
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
357
+
358
+
359
+ class CSP(nn.Module):
360
+ # CSP Bottleneck with 3 convolutions
361
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
362
+ super().__init__()
363
+ c_ = int(c2 * e) # hidden channels
364
+ self.cv1 = Conv(c1, c_, 1, 1)
365
+ self.cv2 = Conv(c1, c_, 1, 1)
366
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
367
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
368
+
369
+ def forward(self, x):
370
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
371
+
372
+
373
+ class RepNCSP(nn.Module):
374
+ # CSP Bottleneck with 3 convolutions
375
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
+ super().__init__()
377
+ c_ = int(c2 * e) # hidden channels
378
+ self.cv1 = Conv(c1, c_, 1, 1)
379
+ self.cv2 = Conv(c1, c_, 1, 1)
380
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
381
+ self.m = nn.Sequential(*(RepNBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
382
+
383
+ def forward(self, x):
384
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
385
+
386
+
387
+ class CSPBase(nn.Module):
388
+ # CSP Bottleneck with 3 convolutions
389
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
390
+ super().__init__()
391
+ c_ = int(c2 * e) # hidden channels
392
+ self.cv1 = Conv(c1, c_, 1, 1)
393
+ self.cv2 = Conv(c1, c_, 1, 1)
394
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
395
+ self.m = nn.Sequential(*(BottleneckBase(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
396
+
397
+ def forward(self, x):
398
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
399
+
400
+
401
+ class SPP(nn.Module):
402
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
403
+ def __init__(self, c1, c2, k=(5, 9, 13)):
404
+ super().__init__()
405
+ c_ = c1 // 2 # hidden channels
406
+ self.cv1 = Conv(c1, c_, 1, 1)
407
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
408
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
409
+
410
+ def forward(self, x):
411
+ x = self.cv1(x)
412
+ with warnings.catch_warnings():
413
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
414
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
415
+
416
+
417
+ class ASPP(torch.nn.Module):
418
+
419
+ def __init__(self, in_channels, out_channels):
420
+ super().__init__()
421
+ kernel_sizes = [1, 3, 3, 1]
422
+ dilations = [1, 3, 6, 1]
423
+ paddings = [0, 3, 6, 0]
424
+ self.aspp = torch.nn.ModuleList()
425
+ for aspp_idx in range(len(kernel_sizes)):
426
+ conv = torch.nn.Conv2d(
427
+ in_channels,
428
+ out_channels,
429
+ kernel_size=kernel_sizes[aspp_idx],
430
+ stride=1,
431
+ dilation=dilations[aspp_idx],
432
+ padding=paddings[aspp_idx],
433
+ bias=True)
434
+ self.aspp.append(conv)
435
+ self.gap = torch.nn.AdaptiveAvgPool2d(1)
436
+ self.aspp_num = len(kernel_sizes)
437
+ for m in self.modules():
438
+ if isinstance(m, torch.nn.Conv2d):
439
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
440
+ m.weight.data.normal_(0, math.sqrt(2. / n))
441
+ m.bias.data.fill_(0)
442
+
443
+ def forward(self, x):
444
+ avg_x = self.gap(x)
445
+ out = []
446
+ for aspp_idx in range(self.aspp_num):
447
+ inp = avg_x if (aspp_idx == self.aspp_num - 1) else x
448
+ out.append(F.relu_(self.aspp[aspp_idx](inp)))
449
+ out[-1] = out[-1].expand_as(out[-2])
450
+ out = torch.cat(out, dim=1)
451
+ return out
452
+
453
+
454
+ class SPPCSPC(nn.Module):
455
+ # CSP SPP https://github.com/WongKinYiu/CrossStagePartialNetworks
456
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
457
+ super(SPPCSPC, self).__init__()
458
+ c_ = int(2 * c2 * e) # hidden channels
459
+ self.cv1 = Conv(c1, c_, 1, 1)
460
+ self.cv2 = Conv(c1, c_, 1, 1)
461
+ self.cv3 = Conv(c_, c_, 3, 1)
462
+ self.cv4 = Conv(c_, c_, 1, 1)
463
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
464
+ self.cv5 = Conv(4 * c_, c_, 1, 1)
465
+ self.cv6 = Conv(c_, c_, 3, 1)
466
+ self.cv7 = Conv(2 * c_, c2, 1, 1)
467
+
468
+ def forward(self, x):
469
+ x1 = self.cv4(self.cv3(self.cv1(x)))
470
+ y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
471
+ y2 = self.cv2(x)
472
+ return self.cv7(torch.cat((y1, y2), dim=1))
473
+
474
+
475
+ class SPPF(nn.Module):
476
+ # Spatial Pyramid Pooling - Fast (SPPF) layer by Glenn Jocher
477
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
478
+ super().__init__()
479
+ c_ = c1 // 2 # hidden channels
480
+ self.cv1 = Conv(c1, c_, 1, 1)
481
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
482
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
483
+ # self.m = SoftPool2d(kernel_size=k, stride=1, padding=k // 2)
484
+
485
+ def forward(self, x):
486
+ x = self.cv1(x)
487
+ with warnings.catch_warnings():
488
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
489
+ y1 = self.m(x)
490
+ y2 = self.m(y1)
491
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
492
+
493
+
494
+ import torch.nn.functional as F
495
+ from torch.nn.modules.utils import _pair
496
+
497
+
498
+ class ReOrg(nn.Module):
499
+ # yolo
500
+ def __init__(self):
501
+ super(ReOrg, self).__init__()
502
+
503
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
504
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
505
+
506
+
507
+ class Contract(nn.Module):
508
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
509
+ def __init__(self, gain=2):
510
+ super().__init__()
511
+ self.gain = gain
512
+
513
+ def forward(self, x):
514
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
515
+ s = self.gain
516
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
517
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
518
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
519
+
520
+
521
+ class Expand(nn.Module):
522
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
523
+ def __init__(self, gain=2):
524
+ super().__init__()
525
+ self.gain = gain
526
+
527
+ def forward(self, x):
528
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
529
+ s = self.gain
530
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
531
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
532
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
533
+
534
+
535
+ class Concat(nn.Module):
536
+ # Concatenate a list of tensors along dimension
537
+ def __init__(self, dimension=1):
538
+ super().__init__()
539
+ self.d = dimension
540
+
541
+ def forward(self, x):
542
+ return torch.cat(x, self.d)
543
+
544
+
545
+ class Shortcut(nn.Module):
546
+ def __init__(self, dimension=0):
547
+ super(Shortcut, self).__init__()
548
+ self.d = dimension
549
+
550
+ def forward(self, x):
551
+ return x[0]+x[1]
552
+
553
+
554
+ class Silence(nn.Module):
555
+ def __init__(self):
556
+ super(Silence, self).__init__()
557
+ def forward(self, x):
558
+ return x
559
+
560
+
561
+ ##### GELAN #####
562
+
563
+ class SPPELAN(nn.Module):
564
+ # spp-elan
565
+ def __init__(self, c1, c2, c3): # ch_in, ch_out, number, shortcut, groups, expansion
566
+ super().__init__()
567
+ self.c = c3
568
+ self.cv1 = Conv(c1, c3, 1, 1)
569
+ self.cv2 = SP(5)
570
+ self.cv3 = SP(5)
571
+ self.cv4 = SP(5)
572
+ self.cv5 = Conv(4*c3, c2, 1, 1)
573
+
574
+ def forward(self, x):
575
+ y = [self.cv1(x)]
576
+ y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
577
+ return self.cv5(torch.cat(y, 1))
578
+
579
+
580
+ class RepNCSPELAN4(nn.Module):
581
+ # csp-elan
582
+ def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
583
+ super().__init__()
584
+ self.c = c3//2
585
+ self.cv1 = Conv(c1, c3, 1, 1)
586
+ self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))
587
+ self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
588
+ self.cv4 = Conv(c3+(2*c4), c2, 1, 1)
589
+
590
+ def forward(self, x):
591
+ y = list(self.cv1(x).chunk(2, 1))
592
+ y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
593
+ return self.cv4(torch.cat(y, 1))
594
+
595
+ def forward_split(self, x):
596
+ y = list(self.cv1(x).split((self.c, self.c), 1))
597
+ y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
598
+ return self.cv4(torch.cat(y, 1))
599
+
600
+ #################
601
+
602
+
603
+ ##### YOLOR #####
604
+
605
+ class ImplicitA(nn.Module):
606
+ def __init__(self, channel):
607
+ super(ImplicitA, self).__init__()
608
+ self.channel = channel
609
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
610
+ nn.init.normal_(self.implicit, std=.02)
611
+
612
+ def forward(self, x):
613
+ return self.implicit + x
614
+
615
+
616
+ class ImplicitM(nn.Module):
617
+ def __init__(self, channel):
618
+ super(ImplicitM, self).__init__()
619
+ self.channel = channel
620
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
621
+ nn.init.normal_(self.implicit, mean=1., std=.02)
622
+
623
+ def forward(self, x):
624
+ return self.implicit * x
625
+
626
+ #################
627
+
628
+
629
+ ##### CBNet #####
630
+
631
+ class CBLinear(nn.Module):
632
+ def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): # ch_in, ch_outs, kernel, stride, padding, groups
633
+ super(CBLinear, self).__init__()
634
+ self.c2s = c2s
635
+ self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
636
+
637
+ def forward(self, x):
638
+ outs = self.conv(x).split(self.c2s, dim=1)
639
+ return outs
640
+
641
+ class CBFuse(nn.Module):
642
+ def __init__(self, idx):
643
+ super(CBFuse, self).__init__()
644
+ self.idx = idx
645
+
646
+ def forward(self, xs):
647
+ target_size = xs[-1].shape[2:]
648
+ res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]
649
+ out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
650
+ return out
651
+
652
+ #################
653
+
654
+
655
+ class DetectMultiBackend(nn.Module):
656
+ # YOLO MultiBackend class for python inference on various backends
657
+ def __init__(self, weights='yolo.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
658
+ # Usage:
659
+ # PyTorch: weights = *.pt
660
+ # TorchScript: *.torchscript
661
+ # ONNX Runtime: *.onnx
662
+ # ONNX OpenCV DNN: *.onnx --dnn
663
+ # OpenVINO: *_openvino_model
664
+ # CoreML: *.mlmodel
665
+ # TensorRT: *.engine
666
+ # TensorFlow SavedModel: *_saved_model
667
+ # TensorFlow GraphDef: *.pb
668
+ # TensorFlow Lite: *.tflite
669
+ # TensorFlow Edge TPU: *_edgetpu.tflite
670
+ # PaddlePaddle: *_paddle_model
671
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
672
+
673
+ super().__init__()
674
+ w = str(weights[0] if isinstance(weights, list) else weights)
675
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
676
+ fp16 &= pt or jit or onnx or engine # FP16
677
+ nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
678
+ stride = 32 # default stride
679
+ cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
680
+ if not (pt or triton):
681
+ w = attempt_download(w) # download if not local
682
+
683
+ if pt: # PyTorch
684
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
685
+ stride = max(int(model.stride.max()), 32) # model stride
686
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
687
+ model.half() if fp16 else model.float()
688
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
689
+ elif jit: # TorchScript
690
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
691
+ extra_files = {'config.txt': ''} # model metadata
692
+ model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
693
+ model.half() if fp16 else model.float()
694
+ if extra_files['config.txt']: # load metadata dict
695
+ d = json.loads(extra_files['config.txt'],
696
+ object_hook=lambda d: {int(k) if k.isdigit() else k: v
697
+ for k, v in d.items()})
698
+ stride, names = int(d['stride']), d['names']
699
+ elif dnn: # ONNX OpenCV DNN
700
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
701
+ check_requirements('opencv-python>=4.5.4')
702
+ net = cv2.dnn.readNetFromONNX(w)
703
+ elif onnx: # ONNX Runtime
704
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
705
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
706
+ import onnxruntime
707
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
708
+ session = onnxruntime.InferenceSession(w, providers=providers)
709
+ output_names = [x.name for x in session.get_outputs()]
710
+ meta = session.get_modelmeta().custom_metadata_map # metadata
711
+ if 'stride' in meta:
712
+ stride, names = int(meta['stride']), eval(meta['names'])
713
+ elif xml: # OpenVINO
714
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
715
+ check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
716
+ from openvino.runtime import Core, Layout, get_batch
717
+ ie = Core()
718
+ if not Path(w).is_file(): # if not *.xml
719
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
720
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
721
+ if network.get_parameters()[0].get_layout().empty:
722
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
723
+ batch_dim = get_batch(network)
724
+ if batch_dim.is_static:
725
+ batch_size = batch_dim.get_length()
726
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
727
+ stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
728
+ elif engine: # TensorRT
729
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
730
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
731
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
732
+ if device.type == 'cpu':
733
+ device = torch.device('cuda:0')
734
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
735
+ logger = trt.Logger(trt.Logger.INFO)
736
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
737
+ model = runtime.deserialize_cuda_engine(f.read())
738
+ context = model.create_execution_context()
739
+ bindings = OrderedDict()
740
+ output_names = []
741
+ fp16 = False # default updated below
742
+ dynamic = False
743
+ for i in range(model.num_bindings):
744
+ name = model.get_binding_name(i)
745
+ dtype = trt.nptype(model.get_binding_dtype(i))
746
+ if model.binding_is_input(i):
747
+ if -1 in tuple(model.get_binding_shape(i)): # dynamic
748
+ dynamic = True
749
+ context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
750
+ if dtype == np.float16:
751
+ fp16 = True
752
+ else: # output
753
+ output_names.append(name)
754
+ shape = tuple(context.get_binding_shape(i))
755
+ im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
756
+ bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
757
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
758
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
759
+ elif coreml: # CoreML
760
+ LOGGER.info(f'Loading {w} for CoreML inference...')
761
+ import coremltools as ct
762
+ model = ct.models.MLModel(w)
763
+ elif saved_model: # TF SavedModel
764
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
765
+ import tensorflow as tf
766
+ keras = False # assume TF1 saved_model
767
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
768
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
769
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
770
+ import tensorflow as tf
771
+
772
+ def wrap_frozen_graph(gd, inputs, outputs):
773
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
774
+ ge = x.graph.as_graph_element
775
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
776
+
777
+ def gd_outputs(gd):
778
+ name_list, input_list = [], []
779
+ for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
780
+ name_list.append(node.name)
781
+ input_list.extend(node.input)
782
+ return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
783
+
784
+ gd = tf.Graph().as_graph_def() # TF GraphDef
785
+ with open(w, 'rb') as f:
786
+ gd.ParseFromString(f.read())
787
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
788
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
789
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
790
+ from tflite_runtime.interpreter import Interpreter, load_delegate
791
+ except ImportError:
792
+ import tensorflow as tf
793
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
794
+ if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
795
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
796
+ delegate = {
797
+ 'Linux': 'libedgetpu.so.1',
798
+ 'Darwin': 'libedgetpu.1.dylib',
799
+ 'Windows': 'edgetpu.dll'}[platform.system()]
800
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
801
+ else: # TFLite
802
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
803
+ interpreter = Interpreter(model_path=w) # load TFLite model
804
+ interpreter.allocate_tensors() # allocate
805
+ input_details = interpreter.get_input_details() # inputs
806
+ output_details = interpreter.get_output_details() # outputs
807
+ # load metadata
808
+ with contextlib.suppress(zipfile.BadZipFile):
809
+ with zipfile.ZipFile(w, "r") as model:
810
+ meta_file = model.namelist()[0]
811
+ meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
812
+ stride, names = int(meta['stride']), meta['names']
813
+ elif tfjs: # TF.js
814
+ raise NotImplementedError('ERROR: YOLO TF.js inference is not supported')
815
+ elif paddle: # PaddlePaddle
816
+ LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
817
+ check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
818
+ import paddle.inference as pdi
819
+ if not Path(w).is_file(): # if not *.pdmodel
820
+ w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
821
+ weights = Path(w).with_suffix('.pdiparams')
822
+ config = pdi.Config(str(w), str(weights))
823
+ if cuda:
824
+ config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
825
+ predictor = pdi.create_predictor(config)
826
+ input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
827
+ output_names = predictor.get_output_names()
828
+ elif triton: # NVIDIA Triton Inference Server
829
+ LOGGER.info(f'Using {w} as Triton Inference Server...')
830
+ check_requirements('tritonclient[all]')
831
+ from utils.triton import TritonRemoteModel
832
+ model = TritonRemoteModel(url=w)
833
+ nhwc = model.runtime.startswith("tensorflow")
834
+ else:
835
+ raise NotImplementedError(f'ERROR: {w} is not a supported format')
836
+
837
+ # class names
838
+ if 'names' not in locals():
839
+ names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
840
+ if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
841
+ names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
842
+
843
+ self.__dict__.update(locals()) # assign all variables to self
844
+
845
+ def forward(self, im, augment=False, visualize=False):
846
+ # YOLO MultiBackend inference
847
+ b, ch, h, w = im.shape # batch, channel, height, width
848
+ if self.fp16 and im.dtype != torch.float16:
849
+ im = im.half() # to FP16
850
+ if self.nhwc:
851
+ im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
852
+
853
+ if self.pt: # PyTorch
854
+ y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
855
+ elif self.jit: # TorchScript
856
+ y = self.model(im)
857
+ elif self.dnn: # ONNX OpenCV DNN
858
+ im = im.cpu().numpy() # torch to numpy
859
+ self.net.setInput(im)
860
+ y = self.net.forward()
861
+ elif self.onnx: # ONNX Runtime
862
+ im = im.cpu().numpy() # torch to numpy
863
+ y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
864
+ elif self.xml: # OpenVINO
865
+ im = im.cpu().numpy() # FP32
866
+ y = list(self.executable_network([im]).values())
867
+ elif self.engine: # TensorRT
868
+ if self.dynamic and im.shape != self.bindings['images'].shape:
869
+ i = self.model.get_binding_index('images')
870
+ self.context.set_binding_shape(i, im.shape) # reshape if dynamic
871
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
872
+ for name in self.output_names:
873
+ i = self.model.get_binding_index(name)
874
+ self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
875
+ s = self.bindings['images'].shape
876
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
877
+ self.binding_addrs['images'] = int(im.data_ptr())
878
+ self.context.execute_v2(list(self.binding_addrs.values()))
879
+ y = [self.bindings[x].data for x in sorted(self.output_names)]
880
+ elif self.coreml: # CoreML
881
+ im = im.cpu().numpy()
882
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
883
+ # im = im.resize((192, 320), Image.ANTIALIAS)
884
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
885
+ if 'confidence' in y:
886
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
887
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
888
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
889
+ else:
890
+ y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
891
+ elif self.paddle: # PaddlePaddle
892
+ im = im.cpu().numpy().astype(np.float32)
893
+ self.input_handle.copy_from_cpu(im)
894
+ self.predictor.run()
895
+ y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
896
+ elif self.triton: # NVIDIA Triton Inference Server
897
+ y = self.model(im)
898
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
899
+ im = im.cpu().numpy()
900
+ if self.saved_model: # SavedModel
901
+ y = self.model(im, training=False) if self.keras else self.model(im)
902
+ elif self.pb: # GraphDef
903
+ y = self.frozen_func(x=self.tf.constant(im))
904
+ else: # Lite or Edge TPU
905
+ input = self.input_details[0]
906
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
907
+ if int8:
908
+ scale, zero_point = input['quantization']
909
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
910
+ self.interpreter.set_tensor(input['index'], im)
911
+ self.interpreter.invoke()
912
+ y = []
913
+ for output in self.output_details:
914
+ x = self.interpreter.get_tensor(output['index'])
915
+ if int8:
916
+ scale, zero_point = output['quantization']
917
+ x = (x.astype(np.float32) - zero_point) * scale # re-scale
918
+ y.append(x)
919
+ y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
920
+ y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
921
+
922
+ if isinstance(y, (list, tuple)):
923
+ return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
924
+ else:
925
+ return self.from_numpy(y)
926
+
927
+ def from_numpy(self, x):
928
+ return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
929
+
930
+ def warmup(self, imgsz=(1, 3, 640, 640)):
931
+ # Warmup model by running inference once
932
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
933
+ if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
934
+ im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
935
+ for _ in range(2 if self.jit else 1): #
936
+ self.forward(im) # warmup
937
+
938
+ @staticmethod
939
+ def _model_type(p='path/to/model.pt'):
940
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
941
+ # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
942
+ from export import export_formats
943
+ from utils.downloads import is_url
944
+ sf = list(export_formats().Suffix) # export suffixes
945
+ if not is_url(p, check=False):
946
+ check_suffix(p, sf) # checks
947
+ url = urlparse(p) # if url may be Triton inference server
948
+ types = [s in Path(p).name for s in sf]
949
+ types[8] &= not types[9] # tflite &= not edgetpu
950
+ triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
951
+ return types + [triton]
952
+
953
+ @staticmethod
954
+ def _load_metadata(f=Path('path/to/meta.yaml')):
955
+ # Load metadata from meta.yaml if it exists
956
+ if f.exists():
957
+ d = yaml_load(f)
958
+ return d['stride'], d['names'] # assign stride, names
959
+ return None, None
960
+
961
+
962
+ class AutoShape(nn.Module):
963
+ # YOLO input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
964
+ conf = 0.25 # NMS confidence threshold
965
+ iou = 0.45 # NMS IoU threshold
966
+ agnostic = False # NMS class-agnostic
967
+ multi_label = False # NMS multiple labels per box
968
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
969
+ max_det = 1000 # maximum number of detections per image
970
+ amp = False # Automatic Mixed Precision (AMP) inference
971
+
972
+ def __init__(self, model, verbose=True):
973
+ super().__init__()
974
+ if verbose:
975
+ LOGGER.info('Adding AutoShape... ')
976
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
977
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
978
+ self.pt = not self.dmb or model.pt # PyTorch model
979
+ self.model = model.eval()
980
+ if self.pt:
981
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
982
+ m.inplace = False # Detect.inplace=False for safe multithread inference
983
+ m.export = True # do not output loss values
984
+
985
+ def _apply(self, fn):
986
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
987
+ self = super()._apply(fn)
988
+ from models.yolo import Detect, Segment
989
+ if self.pt:
990
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
991
+ if isinstance(m, (Detect, Segment)):
992
+ for k in 'stride', 'anchor_grid', 'stride_grid', 'grid':
993
+ x = getattr(m, k)
994
+ setattr(m, k, list(map(fn, x))) if isinstance(x, (list, tuple)) else setattr(m, k, fn(x))
995
+ return self
996
+
997
+ @smart_inference_mode()
998
+ def forward(self, ims, size=640, augment=False, profile=False):
999
+ # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
1000
+ # file: ims = 'data/images/zidane.jpg' # str or PosixPath
1001
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
1002
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
1003
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
1004
+ # numpy: = np.zeros((640,1280,3)) # HWC
1005
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
1006
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
1007
+
1008
+ dt = (Profile(), Profile(), Profile())
1009
+ with dt[0]:
1010
+ if isinstance(size, int): # expand
1011
+ size = (size, size)
1012
+ p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
1013
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
1014
+ if isinstance(ims, torch.Tensor): # torch
1015
+ with amp.autocast(autocast):
1016
+ return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
1017
+
1018
+ # Pre-process
1019
+ n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
1020
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
1021
+ for i, im in enumerate(ims):
1022
+ f = f'image{i}' # filename
1023
+ if isinstance(im, (str, Path)): # filename or uri
1024
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
1025
+ im = np.asarray(exif_transpose(im))
1026
+ elif isinstance(im, Image.Image): # PIL Image
1027
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
1028
+ files.append(Path(f).with_suffix('.jpg').name)
1029
+ if im.shape[0] < 5: # image in CHW
1030
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
1031
+ im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
1032
+ s = im.shape[:2] # HWC
1033
+ shape0.append(s) # image shape
1034
+ g = max(size) / max(s) # gain
1035
+ shape1.append([int(y * g) for y in s])
1036
+ ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
1037
+ shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
1038
+ x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
1039
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
1040
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
1041
+
1042
+ with amp.autocast(autocast):
1043
+ # Inference
1044
+ with dt[1]:
1045
+ y = self.model(x, augment=augment) # forward
1046
+
1047
+ # Post-process
1048
+ with dt[2]:
1049
+ y = non_max_suppression(y if self.dmb else y[0],
1050
+ self.conf,
1051
+ self.iou,
1052
+ self.classes,
1053
+ self.agnostic,
1054
+ self.multi_label,
1055
+ max_det=self.max_det) # NMS
1056
+ for i in range(n):
1057
+ scale_boxes(shape1, y[i][:, :4], shape0[i])
1058
+
1059
+ return Detections(ims, y, files, dt, self.names, x.shape)
1060
+
1061
+
1062
+ class Detections:
1063
+ # YOLO detections class for inference results
1064
+ def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
1065
+ super().__init__()
1066
+ d = pred[0].device # device
1067
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
1068
+ self.ims = ims # list of images as numpy arrays
1069
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
1070
+ self.names = names # class names
1071
+ self.files = files # image filenames
1072
+ self.times = times # profiling times
1073
+ self.xyxy = pred # xyxy pixels
1074
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
1075
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
1076
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
1077
+ self.n = len(self.pred) # number of images (batch size)
1078
+ self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
1079
+ self.s = tuple(shape) # inference BCHW shape
1080
+
1081
+ def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
1082
+ s, crops = '', []
1083
+ for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
1084
+ s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
1085
+ if pred.shape[0]:
1086
+ for c in pred[:, -1].unique():
1087
+ n = (pred[:, -1] == c).sum() # detections per class
1088
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
1089
+ s = s.rstrip(', ')
1090
+ if show or save or render or crop:
1091
+ annotator = Annotator(im, example=str(self.names))
1092
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
1093
+ label = f'{self.names[int(cls)]} {conf:.2f}'
1094
+ if crop:
1095
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
1096
+ crops.append({
1097
+ 'box': box,
1098
+ 'conf': conf,
1099
+ 'cls': cls,
1100
+ 'label': label,
1101
+ 'im': save_one_box(box, im, file=file, save=save)})
1102
+ else: # all others
1103
+ annotator.box_label(box, label if labels else '', color=colors(cls))
1104
+ im = annotator.im
1105
+ else:
1106
+ s += '(no detections)'
1107
+
1108
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
1109
+ if show:
1110
+ display(im) if is_notebook() else im.show(self.files[i])
1111
+ if save:
1112
+ f = self.files[i]
1113
+ im.save(save_dir / f) # save
1114
+ if i == self.n - 1:
1115
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
1116
+ if render:
1117
+ self.ims[i] = np.asarray(im)
1118
+ if pprint:
1119
+ s = s.lstrip('\n')
1120
+ return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
1121
+ if crop:
1122
+ if save:
1123
+ LOGGER.info(f'Saved results to {save_dir}\n')
1124
+ return crops
1125
+
1126
+ @TryExcept('Showing images is not supported in this environment')
1127
+ def show(self, labels=True):
1128
+ self._run(show=True, labels=labels) # show results
1129
+
1130
+ def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
1131
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
1132
+ self._run(save=True, labels=labels, save_dir=save_dir) # save results
1133
+
1134
+ def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
1135
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
1136
+ return self._run(crop=True, save=save, save_dir=save_dir) # crop results
1137
+
1138
+ def render(self, labels=True):
1139
+ self._run(render=True, labels=labels) # render results
1140
+ return self.ims
1141
+
1142
+ def pandas(self):
1143
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
1144
+ new = copy(self) # return copy
1145
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
1146
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
1147
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
1148
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1149
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1150
+ return new
1151
+
1152
+ def tolist(self):
1153
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
1154
+ r = range(self.n) # iterable
1155
+ x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
1156
+ # for d in x:
1157
+ # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1158
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
1159
+ return x
1160
+
1161
+ def print(self):
1162
+ LOGGER.info(self.__str__())
1163
+
1164
+ def __len__(self): # override len(results)
1165
+ return self.n
1166
+
1167
+ def __str__(self): # override print(results)
1168
+ return self._run(pprint=True) # print results
1169
+
1170
+ def __repr__(self):
1171
+ return f'YOLO {self.__class__} instance\n' + self.__str__()
1172
+
1173
+
1174
+ class Proto(nn.Module):
1175
+ # YOLO mask Proto module for segmentation models
1176
+ def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
1177
+ super().__init__()
1178
+ self.cv1 = Conv(c1, c_, k=3)
1179
+ self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
1180
+ self.cv2 = Conv(c_, c_, k=3)
1181
+ self.cv3 = Conv(c_, c2)
1182
+
1183
+ def forward(self, x):
1184
+ return self.cv3(self.cv2(self.upsample(self.cv1(x))))
1185
+
1186
+
1187
+ class Classify(nn.Module):
1188
+ # YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2)
1189
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1190
+ super().__init__()
1191
+ c_ = 1280 # efficientnet_b0 size
1192
+ self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
1193
+ self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
1194
+ self.drop = nn.Dropout(p=0.0, inplace=True)
1195
+ self.linear = nn.Linear(c_, c2) # to x(b,c2)
1196
+
1197
+ def forward(self, x):
1198
+ if isinstance(x, list):
1199
+ x = torch.cat(x, 1)
1200
+ return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
models/detect/gelan-c.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # gelan backbone
14
+ backbone:
15
+ [
16
+ # conv down
17
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
18
+
19
+ # conv down
20
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
21
+
22
+ # elan-1 block
23
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
24
+
25
+ # avg-conv down
26
+ [-1, 1, ADown, [256]], # 3-P3/8
27
+
28
+ # elan-2 block
29
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
30
+
31
+ # avg-conv down
32
+ [-1, 1, ADown, [512]], # 5-P4/16
33
+
34
+ # elan-2 block
35
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
36
+
37
+ # avg-conv down
38
+ [-1, 1, ADown, [512]], # 7-P5/32
39
+
40
+ # elan-2 block
41
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
42
+ ]
43
+
44
+ # gelan head
45
+ head:
46
+ [
47
+ # elan-spp block
48
+ [-1, 1, SPPELAN, [512, 256]], # 9
49
+
50
+ # up-concat merge
51
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
52
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
53
+
54
+ # elan-2 block
55
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
56
+
57
+ # up-concat merge
58
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
59
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
60
+
61
+ # elan-2 block
62
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
63
+
64
+ # avg-conv-down merge
65
+ [-1, 1, ADown, [256]],
66
+ [[-1, 12], 1, Concat, [1]], # cat head P4
67
+
68
+ # elan-2 block
69
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
70
+
71
+ # avg-conv-down merge
72
+ [-1, 1, ADown, [512]],
73
+ [[-1, 9], 1, Concat, [1]], # cat head P5
74
+
75
+ # elan-2 block
76
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
77
+
78
+ # detect
79
+ [[15, 18, 21], 1, DDetect, [nc]], # DDetect(P3, P4, P5)
80
+ ]
models/detect/gelan-e.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # gelan backbone
14
+ backbone:
15
+ [
16
+ [-1, 1, Silence, []],
17
+
18
+ # conv down
19
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
20
+
21
+ # conv down
22
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
23
+
24
+ # elan-1 block
25
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 3
26
+
27
+ # avg-conv down
28
+ [-1, 1, ADown, [256]], # 4-P3/8
29
+
30
+ # elan-2 block
31
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 5
32
+
33
+ # avg-conv down
34
+ [-1, 1, ADown, [512]], # 6-P4/16
35
+
36
+ # elan-2 block
37
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 7
38
+
39
+ # avg-conv down
40
+ [-1, 1, ADown, [1024]], # 8-P5/32
41
+
42
+ # elan-2 block
43
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 9
44
+
45
+ # routing
46
+ [1, 1, CBLinear, [[64]]], # 10
47
+ [3, 1, CBLinear, [[64, 128]]], # 11
48
+ [5, 1, CBLinear, [[64, 128, 256]]], # 12
49
+ [7, 1, CBLinear, [[64, 128, 256, 512]]], # 13
50
+ [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]], # 14
51
+
52
+ # conv down fuse
53
+ [0, 1, Conv, [64, 3, 2]], # 15-P1/2
54
+ [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]], # 16
55
+
56
+ # conv down fuse
57
+ [-1, 1, Conv, [128, 3, 2]], # 17-P2/4
58
+ [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]], # 18
59
+
60
+ # elan-1 block
61
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 19
62
+
63
+ # avg-conv down fuse
64
+ [-1, 1, ADown, [256]], # 20-P3/8
65
+ [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]], # 21
66
+
67
+ # elan-2 block
68
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 22
69
+
70
+ # avg-conv down fuse
71
+ [-1, 1, ADown, [512]], # 23-P4/16
72
+ [[13, 14, -1], 1, CBFuse, [[3, 3]]], # 24
73
+
74
+ # elan-2 block
75
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 25
76
+
77
+ # avg-conv down fuse
78
+ [-1, 1, ADown, [1024]], # 26-P5/32
79
+ [[14, -1], 1, CBFuse, [[4]]], # 27
80
+
81
+ # elan-2 block
82
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 28
83
+ ]
84
+
85
+ # gelan head
86
+ head:
87
+ [
88
+ # elan-spp block
89
+ [28, 1, SPPELAN, [512, 256]], # 29
90
+
91
+ # up-concat merge
92
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93
+ [[-1, 25], 1, Concat, [1]], # cat backbone P4
94
+
95
+ # elan-2 block
96
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 32
97
+
98
+ # up-concat merge
99
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
100
+ [[-1, 22], 1, Concat, [1]], # cat backbone P3
101
+
102
+ # elan-2 block
103
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 35 (P3/8-small)
104
+
105
+ # avg-conv-down merge
106
+ [-1, 1, ADown, [256]],
107
+ [[-1, 32], 1, Concat, [1]], # cat head P4
108
+
109
+ # elan-2 block
110
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 38 (P4/16-medium)
111
+
112
+ # avg-conv-down merge
113
+ [-1, 1, ADown, [512]],
114
+ [[-1, 29], 1, Concat, [1]], # cat head P5
115
+
116
+ # elan-2 block
117
+ [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]], # 41 (P5/32-large)
118
+
119
+ # detect
120
+ [[35, 38, 41], 1, DDetect, [nc]], # Detect(P3, P4, P5)
121
+ ]
models/detect/gelan.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # gelan backbone
14
+ backbone:
15
+ [
16
+ # conv down
17
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
18
+
19
+ # conv down
20
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
21
+
22
+ # elan-1 block
23
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
24
+
25
+ # avg-conv down
26
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
27
+
28
+ # elan-2 block
29
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
30
+
31
+ # avg-conv down
32
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
33
+
34
+ # elan-2 block
35
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
36
+
37
+ # avg-conv down
38
+ [-1, 1, Conv, [512, 3, 2]], # 7-P5/32
39
+
40
+ # elan-2 block
41
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
42
+ ]
43
+
44
+ # gelan head
45
+ head:
46
+ [
47
+ # elan-spp block
48
+ [-1, 1, SPPELAN, [512, 256]], # 9
49
+
50
+ # up-concat merge
51
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
52
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
53
+
54
+ # elan-2 block
55
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
56
+
57
+ # up-concat merge
58
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
59
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
60
+
61
+ # elan-2 block
62
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
63
+
64
+ # avg-conv-down merge
65
+ [-1, 1, Conv, [256, 3, 2]],
66
+ [[-1, 12], 1, Concat, [1]], # cat head P4
67
+
68
+ # elan-2 block
69
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
70
+
71
+ # avg-conv-down merge
72
+ [-1, 1, Conv, [512, 3, 2]],
73
+ [[-1, 9], 1, Concat, [1]], # cat head P5
74
+
75
+ # elan-2 block
76
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
77
+
78
+ # detect
79
+ [[15, 18, 21], 1, DDetect, [nc]], # Detect(P3, P4, P5)
80
+ ]
models/detect/yolov7-af.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv7
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1. # model depth multiple
6
+ width_multiple: 1. # layer channel multiple
7
+ anchors: 3
8
+
9
+ # YOLOv7 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [32, 3, 1]], # 0
13
+
14
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
15
+ [-1, 1, Conv, [64, 3, 1]],
16
+
17
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 1, 1]],
19
+ [-2, 1, Conv, [64, 1, 1]],
20
+ [-1, 1, Conv, [64, 3, 1]],
21
+ [-1, 1, Conv, [64, 3, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [[-1, -3, -5, -6], 1, Concat, [1]],
25
+ [-1, 1, Conv, [256, 1, 1]], # 11
26
+
27
+ [-1, 1, MP, []],
28
+ [-1, 1, Conv, [128, 1, 1]],
29
+ [-3, 1, Conv, [128, 1, 1]],
30
+ [-1, 1, Conv, [128, 3, 2]],
31
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [[-1, -3, -5, -6], 1, Concat, [1]],
39
+ [-1, 1, Conv, [512, 1, 1]], # 24
40
+
41
+ [-1, 1, MP, []],
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-3, 1, Conv, [256, 1, 1]],
44
+ [-1, 1, Conv, [256, 3, 2]],
45
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
46
+ [-1, 1, Conv, [256, 1, 1]],
47
+ [-2, 1, Conv, [256, 1, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -6], 1, Concat, [1]],
53
+ [-1, 1, Conv, [1024, 1, 1]], # 37
54
+
55
+ [-1, 1, MP, []],
56
+ [-1, 1, Conv, [512, 1, 1]],
57
+ [-3, 1, Conv, [512, 1, 1]],
58
+ [-1, 1, Conv, [512, 3, 2]],
59
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
60
+ [-1, 1, Conv, [256, 1, 1]],
61
+ [-2, 1, Conv, [256, 1, 1]],
62
+ [-1, 1, Conv, [256, 3, 1]],
63
+ [-1, 1, Conv, [256, 3, 1]],
64
+ [-1, 1, Conv, [256, 3, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 50
68
+ ]
69
+
70
+ # yolov7 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 51
73
+
74
+ [-1, 1, Conv, [256, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [256, 1, 1]],
80
+ [-2, 1, Conv, [256, 1, 1]],
81
+ [-1, 1, Conv, [128, 3, 1]],
82
+ [-1, 1, Conv, [128, 3, 1]],
83
+ [-1, 1, Conv, [128, 3, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [256, 1, 1]], # 63
87
+
88
+ [-1, 1, Conv, [128, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [128, 1, 1]],
94
+ [-2, 1, Conv, [128, 1, 1]],
95
+ [-1, 1, Conv, [64, 3, 1]],
96
+ [-1, 1, Conv, [64, 3, 1]],
97
+ [-1, 1, Conv, [64, 3, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [128, 1, 1]], # 75
101
+
102
+ [-1, 1, MP, []],
103
+ [-1, 1, Conv, [128, 1, 1]],
104
+ [-3, 1, Conv, [128, 1, 1]],
105
+ [-1, 1, Conv, [128, 3, 2]],
106
+ [[-1, -3, 63], 1, Concat, [1]],
107
+
108
+ [-1, 1, Conv, [256, 1, 1]],
109
+ [-2, 1, Conv, [256, 1, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
115
+ [-1, 1, Conv, [256, 1, 1]], # 88
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [256, 1, 1]],
119
+ [-3, 1, Conv, [256, 1, 1]],
120
+ [-1, 1, Conv, [256, 3, 2]],
121
+ [[-1, -3, 51], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [512, 1, 1]],
124
+ [-2, 1, Conv, [512, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
130
+ [-1, 1, Conv, [512, 1, 1]], # 101
131
+
132
+ [75, 1, Conv, [256, 3, 1]],
133
+ [88, 1, Conv, [512, 3, 1]],
134
+ [101, 1, Conv, [1024, 3, 1]],
135
+
136
+ [[102, 103, 104], 1, Detect, [nc]], # Detect(P3, P4, P5)
137
+ ]
models/detect/yolov9-c.yaml ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # YOLOv9 backbone
14
+ backbone:
15
+ [
16
+ [-1, 1, Silence, []],
17
+
18
+ # conv down
19
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
20
+
21
+ # conv down
22
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
23
+
24
+ # elan-1 block
25
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
26
+
27
+ # avg-conv down
28
+ [-1, 1, ADown, [256]], # 4-P3/8
29
+
30
+ # elan-2 block
31
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
32
+
33
+ # avg-conv down
34
+ [-1, 1, ADown, [512]], # 6-P4/16
35
+
36
+ # elan-2 block
37
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
38
+
39
+ # avg-conv down
40
+ [-1, 1, ADown, [512]], # 8-P5/32
41
+
42
+ # elan-2 block
43
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
44
+ ]
45
+
46
+ # YOLOv9 head
47
+ head:
48
+ [
49
+ # elan-spp block
50
+ [-1, 1, SPPELAN, [512, 256]], # 10
51
+
52
+ # up-concat merge
53
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
54
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
55
+
56
+ # elan-2 block
57
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
58
+
59
+ # up-concat merge
60
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
61
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
62
+
63
+ # elan-2 block
64
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
65
+
66
+ # avg-conv-down merge
67
+ [-1, 1, ADown, [256]],
68
+ [[-1, 13], 1, Concat, [1]], # cat head P4
69
+
70
+ # elan-2 block
71
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
72
+
73
+ # avg-conv-down merge
74
+ [-1, 1, ADown, [512]],
75
+ [[-1, 10], 1, Concat, [1]], # cat head P5
76
+
77
+ # elan-2 block
78
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
79
+
80
+
81
+ # multi-level reversible auxiliary branch
82
+
83
+ # routing
84
+ [5, 1, CBLinear, [[256]]], # 23
85
+ [7, 1, CBLinear, [[256, 512]]], # 24
86
+ [9, 1, CBLinear, [[256, 512, 512]]], # 25
87
+
88
+ # conv down
89
+ [0, 1, Conv, [64, 3, 2]], # 26-P1/2
90
+
91
+ # conv down
92
+ [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
93
+
94
+ # elan-1 block
95
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
96
+
97
+ # avg-conv down fuse
98
+ [-1, 1, ADown, [256]], # 29-P3/8
99
+ [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
100
+
101
+ # elan-2 block
102
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
103
+
104
+ # avg-conv down fuse
105
+ [-1, 1, ADown, [512]], # 32-P4/16
106
+ [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
107
+
108
+ # elan-2 block
109
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
110
+
111
+ # avg-conv down fuse
112
+ [-1, 1, ADown, [512]], # 35-P5/32
113
+ [[25, -1], 1, CBFuse, [[2]]], # 36
114
+
115
+ # elan-2 block
116
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
117
+
118
+
119
+
120
+ # detection head
121
+
122
+ # detect
123
+ [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
124
+ ]
models/detect/yolov9-e.yaml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # YOLOv9 backbone
14
+ backbone:
15
+ [
16
+ [-1, 1, Silence, []],
17
+
18
+ # conv down
19
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
20
+
21
+ # conv down
22
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
23
+
24
+ # csp-elan block
25
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 3
26
+
27
+ # avg-conv down
28
+ [-1, 1, ADown, [256]], # 4-P3/8
29
+
30
+ # csp-elan block
31
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 5
32
+
33
+ # avg-conv down
34
+ [-1, 1, ADown, [512]], # 6-P4/16
35
+
36
+ # csp-elan block
37
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 7
38
+
39
+ # avg-conv down
40
+ [-1, 1, ADown, [1024]], # 8-P5/32
41
+
42
+ # csp-elan block
43
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 9
44
+
45
+ # routing
46
+ [1, 1, CBLinear, [[64]]], # 10
47
+ [3, 1, CBLinear, [[64, 128]]], # 11
48
+ [5, 1, CBLinear, [[64, 128, 256]]], # 12
49
+ [7, 1, CBLinear, [[64, 128, 256, 512]]], # 13
50
+ [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]], # 14
51
+
52
+ # conv down
53
+ [0, 1, Conv, [64, 3, 2]], # 15-P1/2
54
+ [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]], # 16
55
+
56
+ # conv down
57
+ [-1, 1, Conv, [128, 3, 2]], # 17-P2/4
58
+ [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]], # 18
59
+
60
+ # csp-elan block
61
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 19
62
+
63
+ # avg-conv down fuse
64
+ [-1, 1, ADown, [256]], # 20-P3/8
65
+ [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]], # 21
66
+
67
+ # csp-elan block
68
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 22
69
+
70
+ # avg-conv down fuse
71
+ [-1, 1, ADown, [512]], # 23-P4/16
72
+ [[13, 14, -1], 1, CBFuse, [[3, 3]]], # 24
73
+
74
+ # csp-elan block
75
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 25
76
+
77
+ # avg-conv down fuse
78
+ [-1, 1, ADown, [1024]], # 26-P5/32
79
+ [[14, -1], 1, CBFuse, [[4]]], # 27
80
+
81
+ # csp-elan block
82
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 28
83
+ ]
84
+
85
+ # YOLOv9 head
86
+ head:
87
+ [
88
+ # multi-level auxiliary branch
89
+
90
+ # elan-spp block
91
+ [9, 1, SPPELAN, [512, 256]], # 29
92
+
93
+ # up-concat merge
94
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
95
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
96
+
97
+ # csp-elan block
98
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 32
99
+
100
+ # up-concat merge
101
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
103
+
104
+ # csp-elan block
105
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 35
106
+
107
+
108
+
109
+ # main branch
110
+
111
+ # elan-spp block
112
+ [28, 1, SPPELAN, [512, 256]], # 36
113
+
114
+ # up-concat merge
115
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
116
+ [[-1, 25], 1, Concat, [1]], # cat backbone P4
117
+
118
+ # csp-elan block
119
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 39
120
+
121
+ # up-concat merge
122
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
123
+ [[-1, 22], 1, Concat, [1]], # cat backbone P3
124
+
125
+ # csp-elan block
126
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 42 (P3/8-small)
127
+
128
+ # avg-conv-down merge
129
+ [-1, 1, ADown, [256]],
130
+ [[-1, 39], 1, Concat, [1]], # cat head P4
131
+
132
+ # csp-elan block
133
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 45 (P4/16-medium)
134
+
135
+ # avg-conv-down merge
136
+ [-1, 1, ADown, [512]],
137
+ [[-1, 36], 1, Concat, [1]], # cat head P5
138
+
139
+ # csp-elan block
140
+ [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]], # 48 (P5/32-large)
141
+
142
+ # detect
143
+ [[35, 32, 29, 42, 45, 48], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
144
+ ]
models/detect/yolov9.yaml ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv9
2
+
3
+ # parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ #activation: nn.LeakyReLU(0.1)
8
+ #activation: nn.ReLU()
9
+
10
+ # anchors
11
+ anchors: 3
12
+
13
+ # YOLOv9 backbone
14
+ backbone:
15
+ [
16
+ [-1, 1, Silence, []],
17
+
18
+ # conv down
19
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
20
+
21
+ # conv down
22
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
23
+
24
+ # elan-1 block
25
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
26
+
27
+ # conv down
28
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
29
+
30
+ # elan-2 block
31
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
32
+
33
+ # conv down
34
+ [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
35
+
36
+ # elan-2 block
37
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
38
+
39
+ # conv down
40
+ [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
41
+
42
+ # elan-2 block
43
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
44
+ ]
45
+
46
+ # YOLOv9 head
47
+ head:
48
+ [
49
+ # elan-spp block
50
+ [-1, 1, SPPELAN, [512, 256]], # 10
51
+
52
+ # up-concat merge
53
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
54
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
55
+
56
+ # elan-2 block
57
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
58
+
59
+ # up-concat merge
60
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
61
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
62
+
63
+ # elan-2 block
64
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
65
+
66
+ # conv-down merge
67
+ [-1, 1, Conv, [256, 3, 2]],
68
+ [[-1, 13], 1, Concat, [1]], # cat head P4
69
+
70
+ # elan-2 block
71
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
72
+
73
+ # conv-down merge
74
+ [-1, 1, Conv, [512, 3, 2]],
75
+ [[-1, 10], 1, Concat, [1]], # cat head P5
76
+
77
+ # elan-2 block
78
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
79
+
80
+ # routing
81
+ [5, 1, CBLinear, [[256]]], # 23
82
+ [7, 1, CBLinear, [[256, 512]]], # 24
83
+ [9, 1, CBLinear, [[256, 512, 512]]], # 25
84
+
85
+ # conv down
86
+ [0, 1, Conv, [64, 3, 2]], # 26-P1/2
87
+
88
+ # conv down
89
+ [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
90
+
91
+ # elan-1 block
92
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
93
+
94
+ # conv down fuse
95
+ [-1, 1, Conv, [256, 3, 2]], # 29-P3/8
96
+ [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
97
+
98
+ # elan-2 block
99
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
100
+
101
+ # conv down fuse
102
+ [-1, 1, Conv, [512, 3, 2]], # 32-P4/16
103
+ [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
104
+
105
+ # elan-2 block
106
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
107
+
108
+ # conv down fuse
109
+ [-1, 1, Conv, [512, 3, 2]], # 35-P5/32
110
+ [[25, -1], 1, CBFuse, [[2]]], # 36
111
+
112
+ # elan-2 block
113
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
114
+
115
+ # detect
116
+ [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
117
+ ]
models/experimental.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from utils.downloads import attempt_download
8
+
9
+
10
+ class Sum(nn.Module):
11
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
12
+ def __init__(self, n, weight=False): # n: number of inputs
13
+ super().__init__()
14
+ self.weight = weight # apply weights boolean
15
+ self.iter = range(n - 1) # iter object
16
+ if weight:
17
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
18
+
19
+ def forward(self, x):
20
+ y = x[0] # no weight
21
+ if self.weight:
22
+ w = torch.sigmoid(self.w) * 2
23
+ for i in self.iter:
24
+ y = y + x[i + 1] * w[i]
25
+ else:
26
+ for i in self.iter:
27
+ y = y + x[i + 1]
28
+ return y
29
+
30
+
31
+ class MixConv2d(nn.Module):
32
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
33
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
34
+ super().__init__()
35
+ n = len(k) # number of convolutions
36
+ if equal_ch: # equal c_ per group
37
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
38
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
39
+ else: # equal weight.numel() per group
40
+ b = [c2] + [0] * n
41
+ a = np.eye(n + 1, n, k=-1)
42
+ a -= np.roll(a, 1, axis=1)
43
+ a *= np.array(k) ** 2
44
+ a[0] = 1
45
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
46
+
47
+ self.m = nn.ModuleList([
48
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
49
+ self.bn = nn.BatchNorm2d(c2)
50
+ self.act = nn.SiLU()
51
+
52
+ def forward(self, x):
53
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
54
+
55
+
56
+ class Ensemble(nn.ModuleList):
57
+ # Ensemble of models
58
+ def __init__(self):
59
+ super().__init__()
60
+
61
+ def forward(self, x, augment=False, profile=False, visualize=False):
62
+ y = [module(x, augment, profile, visualize)[0] for module in self]
63
+ # y = torch.stack(y).max(0)[0] # max ensemble
64
+ # y = torch.stack(y).mean(0) # mean ensemble
65
+ y = torch.cat(y, 1) # nms ensemble
66
+ return y, None # inference, train output
67
+
68
+
69
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
70
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
71
+ from models.yolo import Detect, Model
72
+
73
+ model = Ensemble()
74
+ for w in weights if isinstance(weights, list) else [weights]:
75
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
76
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
77
+
78
+ # Model compatibility updates
79
+ if not hasattr(ckpt, 'stride'):
80
+ ckpt.stride = torch.tensor([32.])
81
+ if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
82
+ ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
83
+
84
+ model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
85
+
86
+ # Module compatibility updates
87
+ for m in model.modules():
88
+ t = type(m)
89
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
90
+ m.inplace = inplace # torch 1.7.0 compatibility
91
+ # if t is Detect and not isinstance(m.anchor_grid, list):
92
+ # delattr(m, 'anchor_grid')
93
+ # setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
94
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
95
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
96
+
97
+ # Return model
98
+ if len(model) == 1:
99
+ return model[-1]
100
+
101
+ # Return detection ensemble
102
+ print(f'Ensemble created with {weights}\n')
103
+ for k in 'names', 'nc', 'yaml':
104
+ setattr(model, k, getattr(model[0], k))
105
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
106
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
107
+ return model
models/hub/anchors.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv3 & YOLOv5
2
+ # Default anchors for COCO data
3
+
4
+
5
+ # P5 -------------------------------------------------------------------------------------------------------------------
6
+ # P5-640:
7
+ anchors_p5_640:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+
13
+ # P6 -------------------------------------------------------------------------------------------------------------------
14
+ # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
+ anchors_p6_640:
16
+ - [9,11, 21,19, 17,41] # P3/8
17
+ - [43,32, 39,70, 86,64] # P4/16
18
+ - [65,131, 134,130, 120,265] # P5/32
19
+ - [282,180, 247,354, 512,387] # P6/64
20
+
21
+ # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
+ anchors_p6_1280:
23
+ - [19,27, 44,40, 38,94] # P3/8
24
+ - [96,68, 86,152, 180,137] # P4/16
25
+ - [140,301, 303,264, 238,542] # P5/32
26
+ - [436,615, 739,380, 925,792] # P6/64
27
+
28
+ # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
+ anchors_p6_1920:
30
+ - [28,41, 67,59, 57,141] # P3/8
31
+ - [144,103, 129,227, 270,205] # P4/16
32
+ - [209,452, 455,396, 358,812] # P5/32
33
+ - [653,922, 1109,570, 1387,1187] # P6/64
34
+
35
+
36
+ # P7 -------------------------------------------------------------------------------------------------------------------
37
+ # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
+ anchors_p7_640:
39
+ - [11,11, 13,30, 29,20] # P3/8
40
+ - [30,46, 61,38, 39,92] # P4/16
41
+ - [78,80, 146,66, 79,163] # P5/32
42
+ - [149,150, 321,143, 157,303] # P6/64
43
+ - [257,402, 359,290, 524,372] # P7/128
44
+
45
+ # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
+ anchors_p7_1280:
47
+ - [19,22, 54,36, 32,77] # P3/8
48
+ - [70,83, 138,71, 75,173] # P4/16
49
+ - [165,159, 148,334, 375,151] # P5/32
50
+ - [334,317, 251,626, 499,474] # P6/64
51
+ - [750,326, 534,814, 1079,818] # P7/128
52
+
53
+ # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
+ anchors_p7_1920:
55
+ - [29,34, 81,55, 47,115] # P3/8
56
+ - [105,124, 207,107, 113,259] # P4/16
57
+ - [247,238, 222,500, 563,227] # P5/32
58
+ - [501,476, 376,939, 749,711] # P6/64
59
+ - [1126,489, 801,1222, 1618,1227] # P7/128
models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv3
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov3-tiny.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv3
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,14, 23,27, 37,58] # P4/16
9
+ - [81,82, 135,169, 344,319] # P5/32
10
+
11
+ # YOLOv3-tiny backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [16, 3, 1]], # 0
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
+ [-1, 1, Conv, [32, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
+ [-1, 1, Conv, [128, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
+ [-1, 1, Conv, [256, 3, 1]],
23
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
+ [-1, 1, Conv, [512, 3, 1]],
25
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
+ ]
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ [[-1, 1, Conv, [1024, 3, 1]],
32
+ [-1, 1, Conv, [256, 1, 1]],
33
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
+
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
+
40
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
+ ]
models/hub/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv3
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/panoptic/yolov7-af-pan.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv7
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ sem_nc: 93 # number of stuff classes
6
+ depth_multiple: 1.0 # model depth multiple
7
+ width_multiple: 1.0 # layer channel multiple
8
+ anchors: 3
9
+
10
+ # YOLOv7 backbone
11
+ backbone:
12
+ [[-1, 1, Conv, [32, 3, 1]], # 0
13
+
14
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
15
+ [-1, 1, Conv, [64, 3, 1]],
16
+
17
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 1, 1]],
19
+ [-2, 1, Conv, [64, 1, 1]],
20
+ [-1, 1, Conv, [64, 3, 1]],
21
+ [-1, 1, Conv, [64, 3, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [[-1, -3, -5, -6], 1, Concat, [1]],
25
+ [-1, 1, Conv, [256, 1, 1]], # 11
26
+
27
+ [-1, 1, MP, []],
28
+ [-1, 1, Conv, [128, 1, 1]],
29
+ [-3, 1, Conv, [128, 1, 1]],
30
+ [-1, 1, Conv, [128, 3, 2]],
31
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [[-1, -3, -5, -6], 1, Concat, [1]],
39
+ [-1, 1, Conv, [512, 1, 1]], # 24
40
+
41
+ [-1, 1, MP, []],
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-3, 1, Conv, [256, 1, 1]],
44
+ [-1, 1, Conv, [256, 3, 2]],
45
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
46
+ [-1, 1, Conv, [256, 1, 1]],
47
+ [-2, 1, Conv, [256, 1, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -6], 1, Concat, [1]],
53
+ [-1, 1, Conv, [1024, 1, 1]], # 37
54
+
55
+ [-1, 1, MP, []],
56
+ [-1, 1, Conv, [512, 1, 1]],
57
+ [-3, 1, Conv, [512, 1, 1]],
58
+ [-1, 1, Conv, [512, 3, 2]],
59
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
60
+ [-1, 1, Conv, [256, 1, 1]],
61
+ [-2, 1, Conv, [256, 1, 1]],
62
+ [-1, 1, Conv, [256, 3, 1]],
63
+ [-1, 1, Conv, [256, 3, 1]],
64
+ [-1, 1, Conv, [256, 3, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 50
68
+ ]
69
+
70
+ # yolov7 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 51
73
+
74
+ [-1, 1, Conv, [256, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [256, 1, 1]],
80
+ [-2, 1, Conv, [256, 1, 1]],
81
+ [-1, 1, Conv, [128, 3, 1]],
82
+ [-1, 1, Conv, [128, 3, 1]],
83
+ [-1, 1, Conv, [128, 3, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [256, 1, 1]], # 63
87
+
88
+ [-1, 1, Conv, [128, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [128, 1, 1]],
94
+ [-2, 1, Conv, [128, 1, 1]],
95
+ [-1, 1, Conv, [64, 3, 1]],
96
+ [-1, 1, Conv, [64, 3, 1]],
97
+ [-1, 1, Conv, [64, 3, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [128, 1, 1]], # 75
101
+
102
+ [-1, 1, MP, []],
103
+ [-1, 1, Conv, [128, 1, 1]],
104
+ [-3, 1, Conv, [128, 1, 1]],
105
+ [-1, 1, Conv, [128, 3, 2]],
106
+ [[-1, -3, 63], 1, Concat, [1]],
107
+
108
+ [-1, 1, Conv, [256, 1, 1]],
109
+ [-2, 1, Conv, [256, 1, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
115
+ [-1, 1, Conv, [256, 1, 1]], # 88
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [256, 1, 1]],
119
+ [-3, 1, Conv, [256, 1, 1]],
120
+ [-1, 1, Conv, [256, 3, 2]],
121
+ [[-1, -3, 51], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [512, 1, 1]],
124
+ [-2, 1, Conv, [512, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
130
+ [-1, 1, Conv, [512, 1, 1]], # 101
131
+
132
+ [75, 1, Conv, [256, 3, 1]],
133
+ [88, 1, Conv, [512, 3, 1]],
134
+ [101, 1, Conv, [1024, 3, 1]],
135
+
136
+ [[102, 103, 104], 1, Panoptic, [nc, 93, 32, 256]], # Panoptic(P3, P4, P5)
137
+ ]
models/segment/yolov7-af-seg.yaml ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv7
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3
8
+
9
+ # YOLOv7 backbone
10
+ backbone:
11
+ [[-1, 1, Conv, [32, 3, 1]], # 0
12
+
13
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
14
+ [-1, 1, Conv, [64, 3, 1]],
15
+
16
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
17
+ [-1, 1, Conv, [64, 1, 1]],
18
+ [-2, 1, Conv, [64, 1, 1]],
19
+ [-1, 1, Conv, [64, 3, 1]],
20
+ [-1, 1, Conv, [64, 3, 1]],
21
+ [-1, 1, Conv, [64, 3, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [[-1, -3, -5, -6], 1, Concat, [1]],
24
+ [-1, 1, Conv, [256, 1, 1]], # 11
25
+
26
+ [-1, 1, MP, []],
27
+ [-1, 1, Conv, [128, 1, 1]],
28
+ [-3, 1, Conv, [128, 1, 1]],
29
+ [-1, 1, Conv, [128, 3, 2]],
30
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-2, 1, Conv, [128, 1, 1]],
33
+ [-1, 1, Conv, [128, 3, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [[-1, -3, -5, -6], 1, Concat, [1]],
38
+ [-1, 1, Conv, [512, 1, 1]], # 24
39
+
40
+ [-1, 1, MP, []],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-3, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, Conv, [256, 3, 2]],
44
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-2, 1, Conv, [256, 1, 1]],
47
+ [-1, 1, Conv, [256, 3, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [[-1, -3, -5, -6], 1, Concat, [1]],
52
+ [-1, 1, Conv, [1024, 1, 1]], # 37
53
+
54
+ [-1, 1, MP, []],
55
+ [-1, 1, Conv, [512, 1, 1]],
56
+ [-3, 1, Conv, [512, 1, 1]],
57
+ [-1, 1, Conv, [512, 3, 2]],
58
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
59
+ [-1, 1, Conv, [256, 1, 1]],
60
+ [-2, 1, Conv, [256, 1, 1]],
61
+ [-1, 1, Conv, [256, 3, 1]],
62
+ [-1, 1, Conv, [256, 3, 1]],
63
+ [-1, 1, Conv, [256, 3, 1]],
64
+ [-1, 1, Conv, [256, 3, 1]],
65
+ [[-1, -3, -5, -6], 1, Concat, [1]],
66
+ [-1, 1, Conv, [1024, 1, 1]], # 50
67
+ ]
68
+
69
+ # yolov7 head
70
+ head:
71
+ [[-1, 1, SPPCSPC, [512]], # 51
72
+
73
+ [-1, 1, Conv, [256, 1, 1]],
74
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
75
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
76
+ [[-1, -2], 1, Concat, [1]],
77
+
78
+ [-1, 1, Conv, [256, 1, 1]],
79
+ [-2, 1, Conv, [256, 1, 1]],
80
+ [-1, 1, Conv, [128, 3, 1]],
81
+ [-1, 1, Conv, [128, 3, 1]],
82
+ [-1, 1, Conv, [128, 3, 1]],
83
+ [-1, 1, Conv, [128, 3, 1]],
84
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
85
+ [-1, 1, Conv, [256, 1, 1]], # 63
86
+
87
+ [-1, 1, Conv, [128, 1, 1]],
88
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
89
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
90
+ [[-1, -2], 1, Concat, [1]],
91
+
92
+ [-1, 1, Conv, [128, 1, 1]],
93
+ [-2, 1, Conv, [128, 1, 1]],
94
+ [-1, 1, Conv, [64, 3, 1]],
95
+ [-1, 1, Conv, [64, 3, 1]],
96
+ [-1, 1, Conv, [64, 3, 1]],
97
+ [-1, 1, Conv, [64, 3, 1]],
98
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
99
+ [-1, 1, Conv, [128, 1, 1]], # 75
100
+
101
+ [-1, 1, MP, []],
102
+ [-1, 1, Conv, [128, 1, 1]],
103
+ [-3, 1, Conv, [128, 1, 1]],
104
+ [-1, 1, Conv, [128, 3, 2]],
105
+ [[-1, -3, 63], 1, Concat, [1]],
106
+
107
+ [-1, 1, Conv, [256, 1, 1]],
108
+ [-2, 1, Conv, [256, 1, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114
+ [-1, 1, Conv, [256, 1, 1]], # 88
115
+
116
+ [-1, 1, MP, []],
117
+ [-1, 1, Conv, [256, 1, 1]],
118
+ [-3, 1, Conv, [256, 1, 1]],
119
+ [-1, 1, Conv, [256, 3, 2]],
120
+ [[-1, -3, 51], 1, Concat, [1]],
121
+
122
+ [-1, 1, Conv, [512, 1, 1]],
123
+ [-2, 1, Conv, [512, 1, 1]],
124
+ [-1, 1, Conv, [256, 3, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
129
+ [-1, 1, Conv, [512, 1, 1]], # 101
130
+
131
+ [75, 1, Conv, [256, 3, 1]],
132
+ [88, 1, Conv, [512, 3, 1]],
133
+ [101, 1, Conv, [1024, 3, 1]],
134
+
135
+ [[102, 103, 104], 1, Segment, [nc, 32, 256]], # Segment(P3, P4, P5)
136
+ ]
models/tf.py ADDED
@@ -0,0 +1,596 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ from copy import deepcopy
4
+ from pathlib import Path
5
+
6
+ FILE = Path(__file__).resolve()
7
+ ROOT = FILE.parents[1] # YOLO root directory
8
+ if str(ROOT) not in sys.path:
9
+ sys.path.append(str(ROOT)) # add ROOT to PATH
10
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
11
+
12
+ import numpy as np
13
+ import tensorflow as tf
14
+ import torch
15
+ import torch.nn as nn
16
+ from tensorflow import keras
17
+
18
+ from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
19
+ DWConvTranspose2d, Focus, autopad)
20
+ from models.experimental import MixConv2d, attempt_load
21
+ from models.yolo import Detect, Segment
22
+ from utils.activations import SiLU
23
+ from utils.general import LOGGER, make_divisible, print_args
24
+
25
+
26
+ class TFBN(keras.layers.Layer):
27
+ # TensorFlow BatchNormalization wrapper
28
+ def __init__(self, w=None):
29
+ super().__init__()
30
+ self.bn = keras.layers.BatchNormalization(
31
+ beta_initializer=keras.initializers.Constant(w.bias.numpy()),
32
+ gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
33
+ moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
34
+ moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
35
+ epsilon=w.eps)
36
+
37
+ def call(self, inputs):
38
+ return self.bn(inputs)
39
+
40
+
41
+ class TFPad(keras.layers.Layer):
42
+ # Pad inputs in spatial dimensions 1 and 2
43
+ def __init__(self, pad):
44
+ super().__init__()
45
+ if isinstance(pad, int):
46
+ self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
47
+ else: # tuple/list
48
+ self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
49
+
50
+ def call(self, inputs):
51
+ return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
52
+
53
+
54
+ class TFConv(keras.layers.Layer):
55
+ # Standard convolution
56
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
57
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
58
+ super().__init__()
59
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
60
+ # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
61
+ # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
62
+ conv = keras.layers.Conv2D(
63
+ filters=c2,
64
+ kernel_size=k,
65
+ strides=s,
66
+ padding='SAME' if s == 1 else 'VALID',
67
+ use_bias=not hasattr(w, 'bn'),
68
+ kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
69
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
70
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
71
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
72
+ self.act = activations(w.act) if act else tf.identity
73
+
74
+ def call(self, inputs):
75
+ return self.act(self.bn(self.conv(inputs)))
76
+
77
+
78
+ class TFDWConv(keras.layers.Layer):
79
+ # Depthwise convolution
80
+ def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
81
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
82
+ super().__init__()
83
+ assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
84
+ conv = keras.layers.DepthwiseConv2D(
85
+ kernel_size=k,
86
+ depth_multiplier=c2 // c1,
87
+ strides=s,
88
+ padding='SAME' if s == 1 else 'VALID',
89
+ use_bias=not hasattr(w, 'bn'),
90
+ depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
91
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
92
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
93
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
94
+ self.act = activations(w.act) if act else tf.identity
95
+
96
+ def call(self, inputs):
97
+ return self.act(self.bn(self.conv(inputs)))
98
+
99
+
100
+ class TFDWConvTranspose2d(keras.layers.Layer):
101
+ # Depthwise ConvTranspose2d
102
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
103
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
104
+ super().__init__()
105
+ assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
106
+ assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
107
+ weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
108
+ self.c1 = c1
109
+ self.conv = [
110
+ keras.layers.Conv2DTranspose(filters=1,
111
+ kernel_size=k,
112
+ strides=s,
113
+ padding='VALID',
114
+ output_padding=p2,
115
+ use_bias=True,
116
+ kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
117
+ bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
118
+
119
+ def call(self, inputs):
120
+ return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
121
+
122
+
123
+ class TFFocus(keras.layers.Layer):
124
+ # Focus wh information into c-space
125
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
126
+ # ch_in, ch_out, kernel, stride, padding, groups
127
+ super().__init__()
128
+ self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
129
+
130
+ def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
131
+ # inputs = inputs / 255 # normalize 0-255 to 0-1
132
+ inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
133
+ return self.conv(tf.concat(inputs, 3))
134
+
135
+
136
+ class TFBottleneck(keras.layers.Layer):
137
+ # Standard bottleneck
138
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
139
+ super().__init__()
140
+ c_ = int(c2 * e) # hidden channels
141
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
142
+ self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
143
+ self.add = shortcut and c1 == c2
144
+
145
+ def call(self, inputs):
146
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
147
+
148
+
149
+ class TFCrossConv(keras.layers.Layer):
150
+ # Cross Convolution
151
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
152
+ super().__init__()
153
+ c_ = int(c2 * e) # hidden channels
154
+ self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
155
+ self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
156
+ self.add = shortcut and c1 == c2
157
+
158
+ def call(self, inputs):
159
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
160
+
161
+
162
+ class TFConv2d(keras.layers.Layer):
163
+ # Substitution for PyTorch nn.Conv2D
164
+ def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
165
+ super().__init__()
166
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
167
+ self.conv = keras.layers.Conv2D(filters=c2,
168
+ kernel_size=k,
169
+ strides=s,
170
+ padding='VALID',
171
+ use_bias=bias,
172
+ kernel_initializer=keras.initializers.Constant(
173
+ w.weight.permute(2, 3, 1, 0).numpy()),
174
+ bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
175
+
176
+ def call(self, inputs):
177
+ return self.conv(inputs)
178
+
179
+
180
+ class TFBottleneckCSP(keras.layers.Layer):
181
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
182
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
183
+ # ch_in, ch_out, number, shortcut, groups, expansion
184
+ super().__init__()
185
+ c_ = int(c2 * e) # hidden channels
186
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
187
+ self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
188
+ self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
189
+ self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
190
+ self.bn = TFBN(w.bn)
191
+ self.act = lambda x: keras.activations.swish(x)
192
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
193
+
194
+ def call(self, inputs):
195
+ y1 = self.cv3(self.m(self.cv1(inputs)))
196
+ y2 = self.cv2(inputs)
197
+ return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
198
+
199
+
200
+ class TFC3(keras.layers.Layer):
201
+ # CSP Bottleneck with 3 convolutions
202
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
203
+ # ch_in, ch_out, number, shortcut, groups, expansion
204
+ super().__init__()
205
+ c_ = int(c2 * e) # hidden channels
206
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
207
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
208
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
209
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
210
+
211
+ def call(self, inputs):
212
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
213
+
214
+
215
+ class TFC3x(keras.layers.Layer):
216
+ # 3 module with cross-convolutions
217
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
218
+ # ch_in, ch_out, number, shortcut, groups, expansion
219
+ super().__init__()
220
+ c_ = int(c2 * e) # hidden channels
221
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
222
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
223
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
224
+ self.m = keras.Sequential([
225
+ TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
226
+
227
+ def call(self, inputs):
228
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
229
+
230
+
231
+ class TFSPP(keras.layers.Layer):
232
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
233
+ def __init__(self, c1, c2, k=(5, 9, 13), w=None):
234
+ super().__init__()
235
+ c_ = c1 // 2 # hidden channels
236
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
237
+ self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
238
+ self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
239
+
240
+ def call(self, inputs):
241
+ x = self.cv1(inputs)
242
+ return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
243
+
244
+
245
+ class TFSPPF(keras.layers.Layer):
246
+ # Spatial pyramid pooling-Fast layer
247
+ def __init__(self, c1, c2, k=5, w=None):
248
+ super().__init__()
249
+ c_ = c1 // 2 # hidden channels
250
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
251
+ self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
252
+ self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
253
+
254
+ def call(self, inputs):
255
+ x = self.cv1(inputs)
256
+ y1 = self.m(x)
257
+ y2 = self.m(y1)
258
+ return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
259
+
260
+
261
+ class TFDetect(keras.layers.Layer):
262
+ # TF YOLO Detect layer
263
+ def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
264
+ super().__init__()
265
+ self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
266
+ self.nc = nc # number of classes
267
+ self.no = nc + 5 # number of outputs per anchor
268
+ self.nl = len(anchors) # number of detection layers
269
+ self.na = len(anchors[0]) // 2 # number of anchors
270
+ self.grid = [tf.zeros(1)] * self.nl # init grid
271
+ self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
272
+ self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
273
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
274
+ self.training = False # set to False after building model
275
+ self.imgsz = imgsz
276
+ for i in range(self.nl):
277
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
278
+ self.grid[i] = self._make_grid(nx, ny)
279
+
280
+ def call(self, inputs):
281
+ z = [] # inference output
282
+ x = []
283
+ for i in range(self.nl):
284
+ x.append(self.m[i](inputs[i]))
285
+ # x(bs,20,20,255) to x(bs,3,20,20,85)
286
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
287
+ x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
288
+
289
+ if not self.training: # inference
290
+ y = x[i]
291
+ grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
292
+ anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
293
+ xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
294
+ wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
295
+ # Normalize xywh to 0-1 to reduce calibration error
296
+ xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
297
+ wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
298
+ y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
299
+ z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
300
+
301
+ return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
302
+
303
+ @staticmethod
304
+ def _make_grid(nx=20, ny=20):
305
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
306
+ # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
307
+ xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
308
+ return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
309
+
310
+
311
+ class TFSegment(TFDetect):
312
+ # YOLO Segment head for segmentation models
313
+ def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
314
+ super().__init__(nc, anchors, ch, imgsz, w)
315
+ self.nm = nm # number of masks
316
+ self.npr = npr # number of protos
317
+ self.no = 5 + nc + self.nm # number of outputs per anchor
318
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
319
+ self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
320
+ self.detect = TFDetect.call
321
+
322
+ def call(self, x):
323
+ p = self.proto(x[0])
324
+ # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
325
+ p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
326
+ x = self.detect(self, x)
327
+ return (x, p) if self.training else (x[0], p)
328
+
329
+
330
+ class TFProto(keras.layers.Layer):
331
+
332
+ def __init__(self, c1, c_=256, c2=32, w=None):
333
+ super().__init__()
334
+ self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
335
+ self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
336
+ self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
337
+ self.cv3 = TFConv(c_, c2, w=w.cv3)
338
+
339
+ def call(self, inputs):
340
+ return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
341
+
342
+
343
+ class TFUpsample(keras.layers.Layer):
344
+ # TF version of torch.nn.Upsample()
345
+ def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
346
+ super().__init__()
347
+ assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
348
+ self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
349
+ # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
350
+ # with default arguments: align_corners=False, half_pixel_centers=False
351
+ # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
352
+ # size=(x.shape[1] * 2, x.shape[2] * 2))
353
+
354
+ def call(self, inputs):
355
+ return self.upsample(inputs)
356
+
357
+
358
+ class TFConcat(keras.layers.Layer):
359
+ # TF version of torch.concat()
360
+ def __init__(self, dimension=1, w=None):
361
+ super().__init__()
362
+ assert dimension == 1, "convert only NCHW to NHWC concat"
363
+ self.d = 3
364
+
365
+ def call(self, inputs):
366
+ return tf.concat(inputs, self.d)
367
+
368
+
369
+ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
370
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
371
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
372
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
373
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
374
+
375
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
376
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
377
+ m_str = m
378
+ m = eval(m) if isinstance(m, str) else m # eval strings
379
+ for j, a in enumerate(args):
380
+ try:
381
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
382
+ except NameError:
383
+ pass
384
+
385
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
386
+ if m in [
387
+ nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
388
+ BottleneckCSP, C3, C3x]:
389
+ c1, c2 = ch[f], args[0]
390
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
391
+
392
+ args = [c1, c2, *args[1:]]
393
+ if m in [BottleneckCSP, C3, C3x]:
394
+ args.insert(2, n)
395
+ n = 1
396
+ elif m is nn.BatchNorm2d:
397
+ args = [ch[f]]
398
+ elif m is Concat:
399
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
400
+ elif m in [Detect, Segment]:
401
+ args.append([ch[x + 1] for x in f])
402
+ if isinstance(args[1], int): # number of anchors
403
+ args[1] = [list(range(args[1] * 2))] * len(f)
404
+ if m is Segment:
405
+ args[3] = make_divisible(args[3] * gw, 8)
406
+ args.append(imgsz)
407
+ else:
408
+ c2 = ch[f]
409
+
410
+ tf_m = eval('TF' + m_str.replace('nn.', ''))
411
+ m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
412
+ else tf_m(*args, w=model.model[i]) # module
413
+
414
+ torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
415
+ t = str(m)[8:-2].replace('__main__.', '') # module type
416
+ np = sum(x.numel() for x in torch_m_.parameters()) # number params
417
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
418
+ LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
419
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
420
+ layers.append(m_)
421
+ ch.append(c2)
422
+ return keras.Sequential(layers), sorted(save)
423
+
424
+
425
+ class TFModel:
426
+ # TF YOLO model
427
+ def __init__(self, cfg='yolo.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
428
+ super().__init__()
429
+ if isinstance(cfg, dict):
430
+ self.yaml = cfg # model dict
431
+ else: # is *.yaml
432
+ import yaml # for torch hub
433
+ self.yaml_file = Path(cfg).name
434
+ with open(cfg) as f:
435
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
436
+
437
+ # Define model
438
+ if nc and nc != self.yaml['nc']:
439
+ LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
440
+ self.yaml['nc'] = nc # override yaml value
441
+ self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
442
+
443
+ def predict(self,
444
+ inputs,
445
+ tf_nms=False,
446
+ agnostic_nms=False,
447
+ topk_per_class=100,
448
+ topk_all=100,
449
+ iou_thres=0.45,
450
+ conf_thres=0.25):
451
+ y = [] # outputs
452
+ x = inputs
453
+ for m in self.model.layers:
454
+ if m.f != -1: # if not from previous layer
455
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
456
+
457
+ x = m(x) # run
458
+ y.append(x if m.i in self.savelist else None) # save output
459
+
460
+ # Add TensorFlow NMS
461
+ if tf_nms:
462
+ boxes = self._xywh2xyxy(x[0][..., :4])
463
+ probs = x[0][:, :, 4:5]
464
+ classes = x[0][:, :, 5:]
465
+ scores = probs * classes
466
+ if agnostic_nms:
467
+ nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
468
+ else:
469
+ boxes = tf.expand_dims(boxes, 2)
470
+ nms = tf.image.combined_non_max_suppression(boxes,
471
+ scores,
472
+ topk_per_class,
473
+ topk_all,
474
+ iou_thres,
475
+ conf_thres,
476
+ clip_boxes=False)
477
+ return (nms,)
478
+ return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
479
+ # x = x[0] # [x(1,6300,85), ...] to x(6300,85)
480
+ # xywh = x[..., :4] # x(6300,4) boxes
481
+ # conf = x[..., 4:5] # x(6300,1) confidences
482
+ # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
483
+ # return tf.concat([conf, cls, xywh], 1)
484
+
485
+ @staticmethod
486
+ def _xywh2xyxy(xywh):
487
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
488
+ x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
489
+ return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
490
+
491
+
492
+ class AgnosticNMS(keras.layers.Layer):
493
+ # TF Agnostic NMS
494
+ def call(self, input, topk_all, iou_thres, conf_thres):
495
+ # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
496
+ return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
497
+ input,
498
+ fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
499
+ name='agnostic_nms')
500
+
501
+ @staticmethod
502
+ def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
503
+ boxes, classes, scores = x
504
+ class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
505
+ scores_inp = tf.reduce_max(scores, -1)
506
+ selected_inds = tf.image.non_max_suppression(boxes,
507
+ scores_inp,
508
+ max_output_size=topk_all,
509
+ iou_threshold=iou_thres,
510
+ score_threshold=conf_thres)
511
+ selected_boxes = tf.gather(boxes, selected_inds)
512
+ padded_boxes = tf.pad(selected_boxes,
513
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
514
+ mode="CONSTANT",
515
+ constant_values=0.0)
516
+ selected_scores = tf.gather(scores_inp, selected_inds)
517
+ padded_scores = tf.pad(selected_scores,
518
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
519
+ mode="CONSTANT",
520
+ constant_values=-1.0)
521
+ selected_classes = tf.gather(class_inds, selected_inds)
522
+ padded_classes = tf.pad(selected_classes,
523
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
524
+ mode="CONSTANT",
525
+ constant_values=-1.0)
526
+ valid_detections = tf.shape(selected_inds)[0]
527
+ return padded_boxes, padded_scores, padded_classes, valid_detections
528
+
529
+
530
+ def activations(act=nn.SiLU):
531
+ # Returns TF activation from input PyTorch activation
532
+ if isinstance(act, nn.LeakyReLU):
533
+ return lambda x: keras.activations.relu(x, alpha=0.1)
534
+ elif isinstance(act, nn.Hardswish):
535
+ return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
536
+ elif isinstance(act, (nn.SiLU, SiLU)):
537
+ return lambda x: keras.activations.swish(x)
538
+ else:
539
+ raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
540
+
541
+
542
+ def representative_dataset_gen(dataset, ncalib=100):
543
+ # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
544
+ for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
545
+ im = np.transpose(img, [1, 2, 0])
546
+ im = np.expand_dims(im, axis=0).astype(np.float32)
547
+ im /= 255
548
+ yield [im]
549
+ if n >= ncalib:
550
+ break
551
+
552
+
553
+ def run(
554
+ weights=ROOT / 'yolo.pt', # weights path
555
+ imgsz=(640, 640), # inference size h,w
556
+ batch_size=1, # batch size
557
+ dynamic=False, # dynamic batch size
558
+ ):
559
+ # PyTorch model
560
+ im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
561
+ model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
562
+ _ = model(im) # inference
563
+ model.info()
564
+
565
+ # TensorFlow model
566
+ im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
567
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
568
+ _ = tf_model.predict(im) # inference
569
+
570
+ # Keras model
571
+ im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
572
+ keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
573
+ keras_model.summary()
574
+
575
+ LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
576
+
577
+
578
+ def parse_opt():
579
+ parser = argparse.ArgumentParser()
580
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
581
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
582
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
583
+ parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
584
+ opt = parser.parse_args()
585
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
586
+ print_args(vars(opt))
587
+ return opt
588
+
589
+
590
+ def main(opt):
591
+ run(**vars(opt))
592
+
593
+
594
+ if __name__ == "__main__":
595
+ opt = parse_opt()
596
+ main(opt)
models/yolo.py ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import platform
4
+ import sys
5
+ from copy import deepcopy
6
+ from pathlib import Path
7
+
8
+ FILE = Path(__file__).resolve()
9
+ ROOT = FILE.parents[1] # YOLO root directory
10
+ if str(ROOT) not in sys.path:
11
+ sys.path.append(str(ROOT)) # add ROOT to PATH
12
+ if platform.system() != 'Windows':
13
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
14
+
15
+ from models.common import *
16
+ from models.experimental import *
17
+ from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
18
+ from utils.plots import feature_visualization
19
+ from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
20
+ time_sync)
21
+ from utils.tal.anchor_generator import make_anchors, dist2bbox
22
+
23
+ try:
24
+ import thop # for FLOPs computation
25
+ except ImportError:
26
+ thop = None
27
+
28
+
29
+ class Detect(nn.Module):
30
+ # YOLO Detect head for detection models
31
+ dynamic = False # force grid reconstruction
32
+ export = False # export mode
33
+ shape = None
34
+ anchors = torch.empty(0) # init
35
+ strides = torch.empty(0) # init
36
+
37
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
38
+ super().__init__()
39
+ self.nc = nc # number of classes
40
+ self.nl = len(ch) # number of detection layers
41
+ self.reg_max = 16
42
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
43
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
44
+ self.stride = torch.zeros(self.nl) # strides computed during build
45
+
46
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
47
+ self.cv2 = nn.ModuleList(
48
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
49
+ self.cv3 = nn.ModuleList(
50
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
51
+ self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
52
+
53
+ def forward(self, x):
54
+ shape = x[0].shape # BCHW
55
+ for i in range(self.nl):
56
+ x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
57
+ if self.training:
58
+ return x
59
+ elif self.dynamic or self.shape != shape:
60
+ self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
61
+ self.shape = shape
62
+
63
+ box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
64
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
65
+ y = torch.cat((dbox, cls.sigmoid()), 1)
66
+ return y if self.export else (y, x)
67
+
68
+ def bias_init(self):
69
+ # Initialize Detect() biases, WARNING: requires stride availability
70
+ m = self # self.model[-1] # Detect() module
71
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
72
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
73
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
74
+ a[-1].bias.data[:] = 1.0 # box
75
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
76
+
77
+
78
+ class DDetect(nn.Module):
79
+ # YOLO Detect head for detection models
80
+ dynamic = False # force grid reconstruction
81
+ export = False # export mode
82
+ shape = None
83
+ anchors = torch.empty(0) # init
84
+ strides = torch.empty(0) # init
85
+
86
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
87
+ super().__init__()
88
+ self.nc = nc # number of classes
89
+ self.nl = len(ch) # number of detection layers
90
+ self.reg_max = 16
91
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
92
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
93
+ self.stride = torch.zeros(self.nl) # strides computed during build
94
+
95
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
96
+ self.cv2 = nn.ModuleList(
97
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
98
+ self.cv3 = nn.ModuleList(
99
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
100
+ self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
101
+
102
+ def forward(self, x):
103
+ shape = x[0].shape # BCHW
104
+ for i in range(self.nl):
105
+ x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
106
+ if self.training:
107
+ return x
108
+ elif self.dynamic or self.shape != shape:
109
+ self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
110
+ self.shape = shape
111
+
112
+ box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
113
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
114
+ y = torch.cat((dbox, cls.sigmoid()), 1)
115
+ return y if self.export else (y, x)
116
+
117
+ def bias_init(self):
118
+ # Initialize Detect() biases, WARNING: requires stride availability
119
+ m = self # self.model[-1] # Detect() module
120
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
121
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
122
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
123
+ a[-1].bias.data[:] = 1.0 # box
124
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
125
+
126
+
127
+ class DualDetect(nn.Module):
128
+ # YOLO Detect head for detection models
129
+ dynamic = False # force grid reconstruction
130
+ export = False # export mode
131
+ shape = None
132
+ anchors = torch.empty(0) # init
133
+ strides = torch.empty(0) # init
134
+
135
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
136
+ super().__init__()
137
+ self.nc = nc # number of classes
138
+ self.nl = len(ch) // 2 # number of detection layers
139
+ self.reg_max = 16
140
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
141
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
142
+ self.stride = torch.zeros(self.nl) # strides computed during build
143
+
144
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
145
+ c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
146
+ self.cv2 = nn.ModuleList(
147
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
148
+ self.cv3 = nn.ModuleList(
149
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
150
+ self.cv4 = nn.ModuleList(
151
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
152
+ self.cv5 = nn.ModuleList(
153
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
154
+ self.dfl = DFL(self.reg_max)
155
+ self.dfl2 = DFL(self.reg_max)
156
+
157
+ def forward(self, x):
158
+ shape = x[0].shape # BCHW
159
+ d1 = []
160
+ d2 = []
161
+ for i in range(self.nl):
162
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
163
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
164
+ if self.training:
165
+ return [d1, d2]
166
+ elif self.dynamic or self.shape != shape:
167
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
168
+ self.shape = shape
169
+
170
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
171
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
172
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
173
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
174
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
175
+ return y if self.export else (y, [d1, d2])
176
+
177
+ def bias_init(self):
178
+ # Initialize Detect() biases, WARNING: requires stride availability
179
+ m = self # self.model[-1] # Detect() module
180
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
181
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
182
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
183
+ a[-1].bias.data[:] = 1.0 # box
184
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
185
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
186
+ a[-1].bias.data[:] = 1.0 # box
187
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
188
+
189
+
190
+ class DualDDetect(nn.Module):
191
+ # YOLO Detect head for detection models
192
+ dynamic = False # force grid reconstruction
193
+ export = False # export mode
194
+ shape = None
195
+ anchors = torch.empty(0) # init
196
+ strides = torch.empty(0) # init
197
+
198
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
199
+ super().__init__()
200
+ self.nc = nc # number of classes
201
+ self.nl = len(ch) // 2 # number of detection layers
202
+ self.reg_max = 16
203
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
204
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
205
+ self.stride = torch.zeros(self.nl) # strides computed during build
206
+
207
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
208
+ c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
209
+ self.cv2 = nn.ModuleList(
210
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
211
+ self.cv3 = nn.ModuleList(
212
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
213
+ self.cv4 = nn.ModuleList(
214
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
215
+ self.cv5 = nn.ModuleList(
216
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
217
+ self.dfl = DFL(self.reg_max)
218
+ self.dfl2 = DFL(self.reg_max)
219
+
220
+ def forward(self, x):
221
+ shape = x[0].shape # BCHW
222
+ d1 = []
223
+ d2 = []
224
+ for i in range(self.nl):
225
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
226
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
227
+ if self.training:
228
+ return [d1, d2]
229
+ elif self.dynamic or self.shape != shape:
230
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
231
+ self.shape = shape
232
+
233
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
234
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
235
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
236
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
237
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
238
+ return y if self.export else (y, [d1, d2])
239
+ #y = torch.cat((dbox2, cls2.sigmoid()), 1)
240
+ #return y if self.export else (y, d2)
241
+ #y1 = torch.cat((dbox, cls.sigmoid()), 1)
242
+ #y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
243
+ #return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
244
+ #return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
245
+
246
+ def bias_init(self):
247
+ # Initialize Detect() biases, WARNING: requires stride availability
248
+ m = self # self.model[-1] # Detect() module
249
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
250
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
251
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
252
+ a[-1].bias.data[:] = 1.0 # box
253
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
254
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
255
+ a[-1].bias.data[:] = 1.0 # box
256
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
257
+
258
+
259
+ class TripleDetect(nn.Module):
260
+ # YOLO Detect head for detection models
261
+ dynamic = False # force grid reconstruction
262
+ export = False # export mode
263
+ shape = None
264
+ anchors = torch.empty(0) # init
265
+ strides = torch.empty(0) # init
266
+
267
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
268
+ super().__init__()
269
+ self.nc = nc # number of classes
270
+ self.nl = len(ch) // 3 # number of detection layers
271
+ self.reg_max = 16
272
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
273
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
274
+ self.stride = torch.zeros(self.nl) # strides computed during build
275
+
276
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
277
+ c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
278
+ c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
279
+ self.cv2 = nn.ModuleList(
280
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
281
+ self.cv3 = nn.ModuleList(
282
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
283
+ self.cv4 = nn.ModuleList(
284
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
285
+ self.cv5 = nn.ModuleList(
286
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
287
+ self.cv6 = nn.ModuleList(
288
+ nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
289
+ self.cv7 = nn.ModuleList(
290
+ nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
291
+ self.dfl = DFL(self.reg_max)
292
+ self.dfl2 = DFL(self.reg_max)
293
+ self.dfl3 = DFL(self.reg_max)
294
+
295
+ def forward(self, x):
296
+ shape = x[0].shape # BCHW
297
+ d1 = []
298
+ d2 = []
299
+ d3 = []
300
+ for i in range(self.nl):
301
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
302
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
303
+ d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
304
+ if self.training:
305
+ return [d1, d2, d3]
306
+ elif self.dynamic or self.shape != shape:
307
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
308
+ self.shape = shape
309
+
310
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
311
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
312
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
313
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
314
+ box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
315
+ dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
316
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
317
+ return y if self.export else (y, [d1, d2, d3])
318
+
319
+ def bias_init(self):
320
+ # Initialize Detect() biases, WARNING: requires stride availability
321
+ m = self # self.model[-1] # Detect() module
322
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
323
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
324
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
325
+ a[-1].bias.data[:] = 1.0 # box
326
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
327
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
328
+ a[-1].bias.data[:] = 1.0 # box
329
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
330
+ for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
331
+ a[-1].bias.data[:] = 1.0 # box
332
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
333
+
334
+
335
+ class TripleDDetect(nn.Module):
336
+ # YOLO Detect head for detection models
337
+ dynamic = False # force grid reconstruction
338
+ export = False # export mode
339
+ shape = None
340
+ anchors = torch.empty(0) # init
341
+ strides = torch.empty(0) # init
342
+
343
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
344
+ super().__init__()
345
+ self.nc = nc # number of classes
346
+ self.nl = len(ch) // 3 # number of detection layers
347
+ self.reg_max = 16
348
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
349
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
350
+ self.stride = torch.zeros(self.nl) # strides computed during build
351
+
352
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
353
+ max((ch[0], min((self.nc * 2, 128)))) # channels
354
+ c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
355
+ max((ch[self.nl], min((self.nc * 2, 128)))) # channels
356
+ c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
357
+ max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
358
+ self.cv2 = nn.ModuleList(
359
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
360
+ nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
361
+ self.cv3 = nn.ModuleList(
362
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
363
+ self.cv4 = nn.ModuleList(
364
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
365
+ nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
366
+ self.cv5 = nn.ModuleList(
367
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
368
+ self.cv6 = nn.ModuleList(
369
+ nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
370
+ nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
371
+ self.cv7 = nn.ModuleList(
372
+ nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
373
+ self.dfl = DFL(self.reg_max)
374
+ self.dfl2 = DFL(self.reg_max)
375
+ self.dfl3 = DFL(self.reg_max)
376
+
377
+ def forward(self, x):
378
+ shape = x[0].shape # BCHW
379
+ d1 = []
380
+ d2 = []
381
+ d3 = []
382
+ for i in range(self.nl):
383
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
384
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
385
+ d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
386
+ if self.training:
387
+ return [d1, d2, d3]
388
+ elif self.dynamic or self.shape != shape:
389
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
390
+ self.shape = shape
391
+
392
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
393
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
394
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
395
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
396
+ box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
397
+ dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
398
+ #y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
399
+ #return y if self.export else (y, [d1, d2, d3])
400
+ y = torch.cat((dbox3, cls3.sigmoid()), 1)
401
+ return y if self.export else (y, d3)
402
+
403
+ def bias_init(self):
404
+ # Initialize Detect() biases, WARNING: requires stride availability
405
+ m = self # self.model[-1] # Detect() module
406
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
407
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
408
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
409
+ a[-1].bias.data[:] = 1.0 # box
410
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
411
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
412
+ a[-1].bias.data[:] = 1.0 # box
413
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
414
+ for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
415
+ a[-1].bias.data[:] = 1.0 # box
416
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
417
+
418
+
419
+ class Segment(Detect):
420
+ # YOLO Segment head for segmentation models
421
+ def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
422
+ super().__init__(nc, ch, inplace)
423
+ self.nm = nm # number of masks
424
+ self.npr = npr # number of protos
425
+ self.proto = Proto(ch[0], self.npr, self.nm) # protos
426
+ self.detect = Detect.forward
427
+
428
+ c4 = max(ch[0] // 4, self.nm)
429
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
430
+
431
+ def forward(self, x):
432
+ p = self.proto(x[0])
433
+ bs = p.shape[0]
434
+
435
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
436
+ x = self.detect(self, x)
437
+ if self.training:
438
+ return x, mc, p
439
+ return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
440
+
441
+
442
+ class Panoptic(Detect):
443
+ # YOLO Panoptic head for panoptic segmentation models
444
+ def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
445
+ super().__init__(nc, ch, inplace)
446
+ self.sem_nc = sem_nc
447
+ self.nm = nm # number of masks
448
+ self.npr = npr # number of protos
449
+ self.proto = Proto(ch[0], self.npr, self.nm) # protos
450
+ self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
451
+ self.detect = Detect.forward
452
+
453
+ c4 = max(ch[0] // 4, self.nm)
454
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
455
+
456
+
457
+ def forward(self, x):
458
+ p = self.proto(x[0])
459
+ s = self.uconv(x[0])
460
+ bs = p.shape[0]
461
+
462
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
463
+ x = self.detect(self, x)
464
+ if self.training:
465
+ return x, mc, p, s
466
+ return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
467
+
468
+
469
+ class BaseModel(nn.Module):
470
+ # YOLO base model
471
+ def forward(self, x, profile=False, visualize=False):
472
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
473
+
474
+ def _forward_once(self, x, profile=False, visualize=False):
475
+ y, dt = [], [] # outputs
476
+ for m in self.model:
477
+ if m.f != -1: # if not from previous layer
478
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
479
+ if profile:
480
+ self._profile_one_layer(m, x, dt)
481
+ x = m(x) # run
482
+ y.append(x if m.i in self.save else None) # save output
483
+ if visualize:
484
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
485
+ return x
486
+
487
+ def _profile_one_layer(self, m, x, dt):
488
+ c = m == self.model[-1] # is final layer, copy input as inplace fix
489
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
490
+ t = time_sync()
491
+ for _ in range(10):
492
+ m(x.copy() if c else x)
493
+ dt.append((time_sync() - t) * 100)
494
+ if m == self.model[0]:
495
+ LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
496
+ LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
497
+ if c:
498
+ LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
499
+
500
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
501
+ LOGGER.info('Fusing layers... ')
502
+ for m in self.model.modules():
503
+ if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
504
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
505
+ delattr(m, 'bn') # remove batchnorm
506
+ m.forward = m.forward_fuse # update forward
507
+ self.info()
508
+ return self
509
+
510
+ def info(self, verbose=False, img_size=640): # print model information
511
+ model_info(self, verbose, img_size)
512
+
513
+ def _apply(self, fn):
514
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
515
+ self = super()._apply(fn)
516
+ m = self.model[-1] # Detect()
517
+ if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment)):
518
+ m.stride = fn(m.stride)
519
+ m.anchors = fn(m.anchors)
520
+ m.strides = fn(m.strides)
521
+ # m.grid = list(map(fn, m.grid))
522
+ return self
523
+
524
+
525
+ class DetectionModel(BaseModel):
526
+ # YOLO detection model
527
+ def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
528
+ super().__init__()
529
+ if isinstance(cfg, dict):
530
+ self.yaml = cfg # model dict
531
+ else: # is *.yaml
532
+ import yaml # for torch hub
533
+ self.yaml_file = Path(cfg).name
534
+ with open(cfg, encoding='ascii', errors='ignore') as f:
535
+ self.yaml = yaml.safe_load(f) # model dict
536
+
537
+ # Define model
538
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
539
+ if nc and nc != self.yaml['nc']:
540
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
541
+ self.yaml['nc'] = nc # override yaml value
542
+ if anchors:
543
+ LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
544
+ self.yaml['anchors'] = round(anchors) # override yaml value
545
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
546
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
547
+ self.inplace = self.yaml.get('inplace', True)
548
+
549
+ # Build strides, anchors
550
+ m = self.model[-1] # Detect()
551
+ if isinstance(m, (Detect, DDetect, Segment)):
552
+ s = 256 # 2x min stride
553
+ m.inplace = self.inplace
554
+ forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment)) else self.forward(x)
555
+ m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
556
+ # check_anchor_order(m)
557
+ # m.anchors /= m.stride.view(-1, 1, 1)
558
+ self.stride = m.stride
559
+ m.bias_init() # only run once
560
+ if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect)):
561
+ s = 256 # 2x min stride
562
+ m.inplace = self.inplace
563
+ #forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualSegment)) else self.forward(x)[0]
564
+ forward = lambda x: self.forward(x)[0]
565
+ m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
566
+ # check_anchor_order(m)
567
+ # m.anchors /= m.stride.view(-1, 1, 1)
568
+ self.stride = m.stride
569
+ m.bias_init() # only run once
570
+
571
+ # Init weights, biases
572
+ initialize_weights(self)
573
+ self.info()
574
+ LOGGER.info('')
575
+
576
+ def forward(self, x, augment=False, profile=False, visualize=False):
577
+ if augment:
578
+ return self._forward_augment(x) # augmented inference, None
579
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
580
+
581
+ def _forward_augment(self, x):
582
+ img_size = x.shape[-2:] # height, width
583
+ s = [1, 0.83, 0.67] # scales
584
+ f = [None, 3, None] # flips (2-ud, 3-lr)
585
+ y = [] # outputs
586
+ for si, fi in zip(s, f):
587
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
588
+ yi = self._forward_once(xi)[0] # forward
589
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
590
+ yi = self._descale_pred(yi, fi, si, img_size)
591
+ y.append(yi)
592
+ y = self._clip_augmented(y) # clip augmented tails
593
+ return torch.cat(y, 1), None # augmented inference, train
594
+
595
+ def _descale_pred(self, p, flips, scale, img_size):
596
+ # de-scale predictions following augmented inference (inverse operation)
597
+ if self.inplace:
598
+ p[..., :4] /= scale # de-scale
599
+ if flips == 2:
600
+ p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
601
+ elif flips == 3:
602
+ p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
603
+ else:
604
+ x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
605
+ if flips == 2:
606
+ y = img_size[0] - y # de-flip ud
607
+ elif flips == 3:
608
+ x = img_size[1] - x # de-flip lr
609
+ p = torch.cat((x, y, wh, p[..., 4:]), -1)
610
+ return p
611
+
612
+ def _clip_augmented(self, y):
613
+ # Clip YOLO augmented inference tails
614
+ nl = self.model[-1].nl # number of detection layers (P3-P5)
615
+ g = sum(4 ** x for x in range(nl)) # grid points
616
+ e = 1 # exclude layer count
617
+ i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
618
+ y[0] = y[0][:, :-i] # large
619
+ i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
620
+ y[-1] = y[-1][:, i:] # small
621
+ return y
622
+
623
+
624
+ Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
625
+
626
+
627
+ class SegmentationModel(DetectionModel):
628
+ # YOLO segmentation model
629
+ def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
630
+ super().__init__(cfg, ch, nc, anchors)
631
+
632
+
633
+ class ClassificationModel(BaseModel):
634
+ # YOLO classification model
635
+ def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
636
+ super().__init__()
637
+ self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
638
+
639
+ def _from_detection_model(self, model, nc=1000, cutoff=10):
640
+ # Create a YOLO classification model from a YOLO detection model
641
+ if isinstance(model, DetectMultiBackend):
642
+ model = model.model # unwrap DetectMultiBackend
643
+ model.model = model.model[:cutoff] # backbone
644
+ m = model.model[-1] # last layer
645
+ ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
646
+ c = Classify(ch, nc) # Classify()
647
+ c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
648
+ model.model[-1] = c # replace
649
+ self.model = model.model
650
+ self.stride = model.stride
651
+ self.save = []
652
+ self.nc = nc
653
+
654
+ def _from_yaml(self, cfg):
655
+ # Create a YOLO classification model from a *.yaml file
656
+ self.model = None
657
+
658
+
659
+ def parse_model(d, ch): # model_dict, input_channels(3)
660
+ # Parse a YOLO model.yaml dictionary
661
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
662
+ anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
663
+ if act:
664
+ Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
665
+ LOGGER.info(f"{colorstr('activation:')} {act}") # print
666
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
667
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
668
+
669
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
670
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
671
+ m = eval(m) if isinstance(m, str) else m # eval strings
672
+ for j, a in enumerate(args):
673
+ with contextlib.suppress(NameError):
674
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
675
+
676
+ n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
677
+ if m in {
678
+ Conv, AConv, ConvTranspose,
679
+ Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
680
+ RepNCSPELAN4, SPPELAN}:
681
+ c1, c2 = ch[f], args[0]
682
+ if c2 != no: # if not output
683
+ c2 = make_divisible(c2 * gw, 8)
684
+
685
+ args = [c1, c2, *args[1:]]
686
+ if m in {BottleneckCSP, SPPCSPC}:
687
+ args.insert(2, n) # number of repeats
688
+ n = 1
689
+ elif m is nn.BatchNorm2d:
690
+ args = [ch[f]]
691
+ elif m is Concat:
692
+ c2 = sum(ch[x] for x in f)
693
+ elif m is Shortcut:
694
+ c2 = ch[f[0]]
695
+ elif m is ReOrg:
696
+ c2 = ch[f] * 4
697
+ elif m is CBLinear:
698
+ c2 = args[0]
699
+ c1 = ch[f]
700
+ args = [c1, c2, *args[1:]]
701
+ elif m is CBFuse:
702
+ c2 = ch[f[-1]]
703
+ # TODO: channel, gw, gd
704
+ elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment}:
705
+ args.append([ch[x] for x in f])
706
+ # if isinstance(args[1], int): # number of anchors
707
+ # args[1] = [list(range(args[1] * 2))] * len(f)
708
+ if m in {Segment}:
709
+ args[2] = make_divisible(args[2] * gw, 8)
710
+ elif m is Contract:
711
+ c2 = ch[f] * args[0] ** 2
712
+ elif m is Expand:
713
+ c2 = ch[f] // args[0] ** 2
714
+ else:
715
+ c2 = ch[f]
716
+
717
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
718
+ t = str(m)[8:-2].replace('__main__.', '') # module type
719
+ np = sum(x.numel() for x in m_.parameters()) # number params
720
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
721
+ LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
722
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
723
+ layers.append(m_)
724
+ if i == 0:
725
+ ch = []
726
+ ch.append(c2)
727
+ return nn.Sequential(*layers), sorted(save)
728
+
729
+
730
+ if __name__ == '__main__':
731
+ parser = argparse.ArgumentParser()
732
+ parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
733
+ parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
734
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
735
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
736
+ parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
737
+ parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
738
+ opt = parser.parse_args()
739
+ opt.cfg = check_yaml(opt.cfg) # check YAML
740
+ print_args(vars(opt))
741
+ device = select_device(opt.device)
742
+
743
+ # Create model
744
+ im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
745
+ model = Model(opt.cfg).to(device)
746
+ model.eval()
747
+
748
+ # Options
749
+ if opt.line_profile: # profile layer by layer
750
+ model(im, profile=True)
751
+
752
+ elif opt.profile: # profile forward-backward
753
+ results = profile(input=im, ops=[model], n=3)
754
+
755
+ elif opt.test: # test all models
756
+ for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
757
+ try:
758
+ _ = Model(cfg)
759
+ except Exception as e:
760
+ print(f'Error in {cfg}: {e}')
761
+
762
+ else: # report fused model summary
763
+ model.fuse()