Spaces:
Sleeping
Sleeping
"""PyTorch implementation of the Lion optimizer.""" | |
import torch | |
from torch.optim.optimizer import Optimizer | |
class Lion(Optimizer): | |
r"""Implements Lion algorithm.""" | |
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0): | |
"""Initialize the hyperparameters. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-4) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.99)) | |
weight_decay (float, optional): weight decay coefficient (default: 0) | |
""" | |
if not 0.0 <= lr: | |
raise ValueError('Invalid learning rate: {}'.format(lr)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) | |
super().__init__(params, defaults) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
Returns: | |
the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
# Perform stepweight decay | |
p.data.mul_(1 - group['lr'] * group['weight_decay']) | |
grad = p.grad | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p) | |
exp_avg = state['exp_avg'] | |
beta1, beta2 = group['betas'] | |
# Weight update | |
update = exp_avg * beta1 + grad * (1 - beta1) | |
p.add_(torch.sign(update), alpha=-group['lr']) | |
# Decay the momentum running average coefficient | |
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2) | |
return loss |