Spaces:
Running
Running
ibrahim313
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,224 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from groq import Groq
|
4 |
-
from typing import List, Dict
|
5 |
import json
|
6 |
from datetime import datetime
|
7 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
-
def get_groq_client():
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class ContentAnalysisAgent:
|
14 |
def __init__(self):
|
15 |
-
"""Initialize the agent with Groq client"""
|
16 |
self.client = get_groq_client()
|
17 |
self.system_prompt = """You are an expert social media content analyzer with deep understanding of engagement,
|
18 |
-
audience psychology, and content optimization.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
def
|
21 |
-
"""
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
"""Get response from Groq LLM"""
|
27 |
-
try:
|
28 |
-
response = self.client.chat.completions.create(
|
29 |
-
messages=messages,
|
30 |
-
model="llama3-8b-8192",
|
31 |
-
temperature=0.7,
|
32 |
-
max_tokens=1024,
|
33 |
-
)
|
34 |
-
return response.choices[0].message.content
|
35 |
-
except Exception as e:
|
36 |
-
st.error(f"Error in LLM processing: {str(e)}")
|
37 |
-
return None
|
38 |
-
|
39 |
-
def _create_analysis_prompt(self, text: str) -> str:
|
40 |
-
"""Create a detailed analysis prompt with agentic thinking"""
|
41 |
-
return f"""Let's analyze this social media post step by step:
|
42 |
-
POST: {text}
|
43 |
-
Think through the following aspects:
|
44 |
-
1. CONTENT STRUCTURE ANALYSIS
|
45 |
-
- Examine length, formatting, and organization
|
46 |
-
- Identify key message components
|
47 |
-
- Note special characters and emoji usage
|
48 |
-
2. AUDIENCE PSYCHOLOGY
|
49 |
-
- Who is the target audience?
|
50 |
-
- What emotional triggers are present?
|
51 |
-
- What call-to-actions exist?
|
52 |
-
3. ENGAGEMENT POTENTIAL
|
53 |
-
- Analyze hook effectiveness
|
54 |
-
- Evaluate storytelling elements
|
55 |
-
- Assess viral potential
|
56 |
-
4. STYLE AND TONE
|
57 |
-
- Determine primary content style
|
58 |
-
- Identify emotional undertones
|
59 |
-
- Evaluate brand voice consistency
|
60 |
-
5. OPTIMIZATION OPPORTUNITIES
|
61 |
-
- Identify areas for improvement
|
62 |
-
- Suggest engagement boosters
|
63 |
-
- Note potential risks or concerns
|
64 |
-
Return a JSON structured response with:
|
65 |
{{
|
66 |
-
"style": "
|
67 |
-
"tones": ["
|
68 |
-
"rating": "1-5
|
69 |
-
"engagement_score": "0-100
|
70 |
"analysis": {{
|
71 |
-
"strengths": ["
|
72 |
-
"improvements": ["
|
73 |
-
"audience_fit": "
|
74 |
}}
|
75 |
}}"""
|
76 |
|
77 |
-
def analyze_post(self, post_text: str) -> Dict:
|
78 |
-
"""Perform comprehensive post analysis"""
|
79 |
-
# First thinking phase - Initial Assessment
|
80 |
-
self._think("π Phase 1: Initial Assessment\nAnalyzing post structure and basic elements...")
|
81 |
-
|
82 |
-
# Create conversation with system prompt and analysis request
|
83 |
messages = [
|
84 |
{"role": "system", "content": self.system_prompt},
|
85 |
-
{"role": "user", "content":
|
86 |
]
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
class GraicieApp:
|
121 |
def __init__(self):
|
|
|
122 |
self.agent = ContentAnalysisAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
def
|
|
|
125 |
st.title("π€ Project Graicie - Advanced Content Analyzer")
|
126 |
st.markdown("""
|
127 |
### Powered by LLaMA 3 & Agentic AI
|
128 |
Get deep, AI-powered insights into your social media content using advanced language models.
|
129 |
""")
|
130 |
|
131 |
-
def
|
132 |
-
|
133 |
-
"Viral Post": "π HUGE ANNOUNCEMENT! After months of work, my online course is finally LIVE! π\n"
|
134 |
-
"Learn how I grew from 0 to 100K followers in 6 months! Early bird pricing ends tomorrow! π«\n"
|
135 |
-
"#socialmedia #digitalmarketing #success",
|
136 |
-
"Personal Story": "Sometimes life throws you curveballs... Today I faced my biggest fear and went "
|
137 |
-
"skydiving! πͺ Swipe to see my reaction! Remember: growth happens outside your comfort zone π\n"
|
138 |
-
"#personalgrowth #motivation",
|
139 |
-
"Educational": "π§ 5 Python Tips You Didn't Know:\n1. List comprehensions\n2. f-strings\n3. Walrus operator\n"
|
140 |
-
"4. Context managers\n5. Lambda functions\nSave this for later! π‘\n#coding #programming"
|
141 |
-
}
|
142 |
-
|
143 |
-
st.subheader("π± Try an Example Post")
|
144 |
-
selected_example = st.selectbox("Select an example post:", list(examples.keys()))
|
145 |
-
|
146 |
-
if selected_example:
|
147 |
-
st.text_area("Example Post", examples[selected_example], height=100, disabled=True)
|
148 |
-
if st.button("Analyze Example", use_container_width=True):
|
149 |
-
self.analyze_and_display(examples[selected_example])
|
150 |
-
|
151 |
-
def display_results(self, results: Dict):
|
152 |
if not results:
|
153 |
return
|
154 |
|
155 |
-
#
|
156 |
-
|
157 |
-
with
|
158 |
st.metric("Style", results["style"])
|
159 |
-
with
|
160 |
-
st.metric("Engagement
|
161 |
-
with
|
162 |
-
st.metric("
|
163 |
-
with
|
164 |
st.metric("Audience Fit", results["analysis"]["audience_fit"])
|
165 |
|
166 |
-
#
|
167 |
st.subheader("π Content Tones")
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
col1, col2 = st.columns(2)
|
174 |
with col1:
|
175 |
st.subheader("πͺ Strengths")
|
@@ -181,24 +230,55 @@ class GraicieApp:
|
|
181 |
for improvement in results["analysis"]["improvements"]:
|
182 |
st.markdown(f"π {improvement}")
|
183 |
|
184 |
-
#
|
185 |
if "recommendations" in results:
|
186 |
st.subheader("π Specific Recommendations")
|
187 |
-
|
|
|
188 |
|
189 |
-
def
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
def run(self):
|
195 |
-
|
|
|
|
|
196 |
|
197 |
# Main content area
|
198 |
col1, col2 = st.columns([2, 1])
|
199 |
|
200 |
with col1:
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
st.subheader("π Analyze Your Post")
|
204 |
user_post = st.text_area(
|
@@ -209,35 +289,17 @@ class GraicieApp:
|
|
209 |
|
210 |
if st.button("π Analyze My Post", use_container_width=True):
|
211 |
if user_post:
|
212 |
-
|
|
|
|
|
213 |
else:
|
214 |
st.warning("Please enter some content to analyze!")
|
215 |
|
216 |
-
with col2:
|
217 |
-
st.subheader("π‘ Pro Tips")
|
218 |
-
st.info("""
|
219 |
-
**Content That Works:**
|
220 |
-
1. Tell authentic stories
|
221 |
-
2. Use relevant hashtags
|
222 |
-
3. Include call-to-actions
|
223 |
-
4. Add visual elements
|
224 |
-
5. Engage with questions
|
225 |
-
""")
|
226 |
-
|
227 |
-
st.markdown("### π Optimal Post Elements")
|
228 |
-
st.markdown("""
|
229 |
-
- Length: 80-150 characters
|
230 |
-
- Hashtags: 3-5 relevant tags
|
231 |
-
- Emojis: 2-3 key emojis
|
232 |
-
- CTA: One clear action
|
233 |
-
""")
|
234 |
-
|
235 |
# Footer
|
236 |
st.markdown(
|
237 |
"""
|
238 |
-
<div style='
|
239 |
-
|
240 |
-
<p style='margin: 0; color: #666;'>
|
241 |
Powered by LLaMA 3 & Groq | Made with β€οΈ by Project Graicie Team |
|
242 |
Β© 2024 Project Graicie
|
243 |
</p>
|
@@ -246,7 +308,10 @@ class GraicieApp:
|
|
246 |
unsafe_allow_html=True,
|
247 |
)
|
248 |
|
249 |
-
|
250 |
if __name__ == "__main__":
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from groq import Groq
|
4 |
+
from typing import List, Dict, Optional, Union
|
5 |
import json
|
6 |
from datetime import datetime
|
7 |
import time
|
8 |
+
from functools import lru_cache
|
9 |
+
import logging
|
10 |
+
from contextlib import contextmanager
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Constants
|
17 |
+
MAX_RETRIES = 3
|
18 |
+
RETRY_DELAY = 1
|
19 |
+
DEFAULT_TEMPERATURE = 0.5
|
20 |
+
MAX_TOKENS = 1024
|
21 |
+
MODEL_NAME = "llama3-8b-8192"
|
22 |
+
|
23 |
+
class APIError(Exception):
|
24 |
+
"""Custom exception for API-related errors"""
|
25 |
+
pass
|
26 |
+
|
27 |
+
class JSONParsingError(Exception):
|
28 |
+
"""Custom exception for JSON parsing errors"""
|
29 |
+
pass
|
30 |
+
|
31 |
+
@contextmanager
|
32 |
+
def error_handler(context: str):
|
33 |
+
"""Context manager for handling errors with specific context"""
|
34 |
+
try:
|
35 |
+
yield
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Error in {context}: {str(e)}")
|
38 |
+
st.error(f"An error occurred in {context}. Please try again.")
|
39 |
+
raise
|
40 |
|
41 |
@st.cache_resource
|
42 |
+
def get_groq_client() -> Groq:
|
43 |
+
"""Initialize and cache Groq client"""
|
44 |
+
try:
|
45 |
+
return Groq(api_key=st.secrets["groq_api_key"])
|
46 |
+
except Exception as e:
|
47 |
+
logger.error(f"Failed to initialize Groq client: {str(e)}")
|
48 |
+
st.error("Failed to initialize AI service. Please check your API key.")
|
49 |
+
raise APIError("Failed to initialize Groq client")
|
50 |
|
51 |
class ContentAnalysisAgent:
|
52 |
def __init__(self):
|
53 |
+
"""Initialize the agent with Groq client and default settings"""
|
54 |
self.client = get_groq_client()
|
55 |
self.system_prompt = """You are an expert social media content analyzer with deep understanding of engagement,
|
56 |
+
audience psychology, and content optimization. You must ALWAYS return responses in valid JSON format when requested.
|
57 |
+
Analyze content step by step using a systematic approach."""
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def _display_thinking(thought: str):
|
61 |
+
"""Display agent's thinking process in a collapsible container"""
|
62 |
+
with st.expander("π€ Analysis Process", expanded=False):
|
63 |
+
st.markdown(f"```\n{thought}\n```")
|
64 |
+
|
65 |
+
def _call_api(self, messages: List[Dict], retries: int = MAX_RETRIES) -> Optional[str]:
|
66 |
+
"""Make API call with retry logic"""
|
67 |
+
for attempt in range(retries):
|
68 |
+
try:
|
69 |
+
response = self.client.chat.completions.create(
|
70 |
+
messages=messages,
|
71 |
+
model=MODEL_NAME,
|
72 |
+
temperature=DEFAULT_TEMPERATURE,
|
73 |
+
max_tokens=MAX_TOKENS
|
74 |
+
)
|
75 |
+
return response.choices[0].message.content
|
76 |
+
except Exception as e:
|
77 |
+
if attempt == retries - 1:
|
78 |
+
logger.error(f"API call failed after {retries} attempts: {str(e)}")
|
79 |
+
raise APIError(f"Failed to get response from AI service: {str(e)}")
|
80 |
+
time.sleep(RETRY_DELAY)
|
81 |
+
return None
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def _parse_json(response: str) -> Dict:
|
85 |
+
"""Parse JSON from response with enhanced error handling"""
|
86 |
+
try:
|
87 |
+
# First attempt: direct JSON parsing
|
88 |
+
return json.loads(response)
|
89 |
+
except json.JSONDecodeError:
|
90 |
+
try:
|
91 |
+
# Second attempt: extract JSON structure
|
92 |
+
start_idx = response.find('{')
|
93 |
+
end_idx = response.rfind('}') + 1
|
94 |
+
if start_idx != -1 and end_idx > start_idx:
|
95 |
+
json_str = response[start_idx:end_idx]
|
96 |
+
# Clean up common formatting issues
|
97 |
+
json_str = (json_str.replace('\n', ' ')
|
98 |
+
.replace('```json', '')
|
99 |
+
.replace('```', '')
|
100 |
+
.strip())
|
101 |
+
return json.loads(json_str)
|
102 |
+
except (json.JSONDecodeError, ValueError) as e:
|
103 |
+
logger.warning(f"JSON parsing failed: {str(e)}")
|
104 |
+
# Return fallback structure
|
105 |
+
return {
|
106 |
+
"style": "unknown",
|
107 |
+
"tones": ["neutral"],
|
108 |
+
"rating": "3",
|
109 |
+
"engagement_score": "50",
|
110 |
+
"analysis": {
|
111 |
+
"strengths": ["Content provided"],
|
112 |
+
"improvements": ["Format needs review"],
|
113 |
+
"audience_fit": "medium"
|
114 |
+
},
|
115 |
+
"error": "Response parsing failed"
|
116 |
+
}
|
117 |
|
118 |
+
def analyze_post(self, post_text: str) -> Dict:
|
119 |
+
"""Analyze post content with comprehensive error handling"""
|
120 |
+
analysis_prompt = f"""Analyze this social media post and return ONLY a valid JSON object:
|
121 |
+
POST: {post_text}
|
122 |
|
123 |
+
Required structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
{{
|
125 |
+
"style": "posting style",
|
126 |
+
"tones": ["tone1", "tone2"],
|
127 |
+
"rating": "1-5",
|
128 |
+
"engagement_score": "0-100",
|
129 |
"analysis": {{
|
130 |
+
"strengths": ["strength1", "strength2"],
|
131 |
+
"improvements": ["improvement1", "improvement2"],
|
132 |
+
"audience_fit": "low/medium/high"
|
133 |
}}
|
134 |
}}"""
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
messages = [
|
137 |
{"role": "system", "content": self.system_prompt},
|
138 |
+
{"role": "user", "content": analysis_prompt}
|
139 |
]
|
140 |
|
141 |
+
with st.spinner("π Analyzing content..."):
|
142 |
+
try:
|
143 |
+
analysis_response = self._call_api(messages)
|
144 |
+
if not analysis_response:
|
145 |
+
raise APIError("No response received from API")
|
146 |
+
|
147 |
+
analysis_result = self._parse_json(analysis_response)
|
148 |
+
|
149 |
+
# Get recommendations
|
150 |
+
recommendation_prompt = """Provide exactly 3 specific, actionable recommendations
|
151 |
+
to improve engagement. Return as a JSON array of strings."""
|
152 |
+
|
153 |
+
messages.append({"role": "user", "content": recommendation_prompt})
|
154 |
+
recommendations = self._call_api(messages)
|
155 |
+
|
156 |
+
if recommendations:
|
157 |
+
try:
|
158 |
+
parsed_recommendations = json.loads(recommendations)
|
159 |
+
if isinstance(parsed_recommendations, list):
|
160 |
+
analysis_result["recommendations"] = parsed_recommendations
|
161 |
+
else:
|
162 |
+
analysis_result["recommendations"] = [recommendations.strip()]
|
163 |
+
except json.JSONDecodeError:
|
164 |
+
analysis_result["recommendations"] = [recommendations.strip()]
|
165 |
+
|
166 |
+
return analysis_result
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(f"Analysis failed: {str(e)}")
|
170 |
+
st.error("Analysis failed. Please try again.")
|
171 |
+
return None
|
172 |
|
173 |
class GraicieApp:
|
174 |
def __init__(self):
|
175 |
+
"""Initialize the Graicie application"""
|
176 |
self.agent = ContentAnalysisAgent()
|
177 |
+
self.example_posts = {
|
178 |
+
"Viral Marketing": "π HUGE ANNOUNCEMENT! After months of work, my online course is finally LIVE! π\n"
|
179 |
+
"Learn how I grew from 0 to 100K followers in 6 months! Early bird pricing ends tomorrow! π«\n"
|
180 |
+
"#socialmedia #digitalmarketing #success",
|
181 |
+
"Personal Story": "Sometimes life throws you curveballs... Today I faced my biggest fear and went "
|
182 |
+
"skydiving! πͺ Swipe to see my reaction! Remember: growth happens outside your comfort zone π\n"
|
183 |
+
"#personalgrowth #motivation",
|
184 |
+
"Educational": "π§ 5 Python Tips You Didn't Know:\n1. List comprehensions\n2. f-strings\n3. Walrus operator\n"
|
185 |
+
"4. Context managers\n5. Lambda functions\nSave this for later! π‘\n#coding #programming"
|
186 |
+
}
|
187 |
|
188 |
+
def _display_header(self):
|
189 |
+
"""Display application header"""
|
190 |
st.title("π€ Project Graicie - Advanced Content Analyzer")
|
191 |
st.markdown("""
|
192 |
### Powered by LLaMA 3 & Agentic AI
|
193 |
Get deep, AI-powered insights into your social media content using advanced language models.
|
194 |
""")
|
195 |
|
196 |
+
def _display_metrics(self, results: Dict):
|
197 |
+
"""Display analysis metrics in a structured format"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
if not results:
|
199 |
return
|
200 |
|
201 |
+
# Main metrics
|
202 |
+
cols = st.columns(4)
|
203 |
+
with cols[0]:
|
204 |
st.metric("Style", results["style"])
|
205 |
+
with cols[1]:
|
206 |
+
st.metric("Engagement", f"{results['engagement_score']}/100")
|
207 |
+
with cols[2]:
|
208 |
+
st.metric("Rating", f"{results['rating']}/5")
|
209 |
+
with cols[3]:
|
210 |
st.metric("Audience Fit", results["analysis"]["audience_fit"])
|
211 |
|
212 |
+
# Content tones
|
213 |
st.subheader("π Content Tones")
|
214 |
+
tone_html = " ".join([
|
215 |
+
f"<span style='background-color: #e6f3ff; padding: 5px 10px; "
|
216 |
+
f"margin: 5px; border-radius: 15px;'>{tone}</span>"
|
217 |
+
for tone in results["tones"]
|
218 |
+
])
|
219 |
+
st.markdown(tone_html, unsafe_allow_html=True)
|
220 |
+
|
221 |
+
# Analysis details
|
222 |
col1, col2 = st.columns(2)
|
223 |
with col1:
|
224 |
st.subheader("πͺ Strengths")
|
|
|
230 |
for improvement in results["analysis"]["improvements"]:
|
231 |
st.markdown(f"π {improvement}")
|
232 |
|
233 |
+
# Recommendations
|
234 |
if "recommendations" in results:
|
235 |
st.subheader("π Specific Recommendations")
|
236 |
+
for idx, rec in enumerate(results["recommendations"], 1):
|
237 |
+
st.markdown(f"{idx}. {rec}")
|
238 |
|
239 |
+
def _display_sidebar(self):
|
240 |
+
"""Display sidebar with tips and information"""
|
241 |
+
with st.sidebar:
|
242 |
+
st.subheader("π‘ Pro Tips")
|
243 |
+
st.info("""
|
244 |
+
**Content Best Practices:**
|
245 |
+
1. Tell authentic stories
|
246 |
+
2. Use relevant hashtags
|
247 |
+
3. Include call-to-actions
|
248 |
+
4. Add visual elements
|
249 |
+
5. Engage with questions
|
250 |
+
""")
|
251 |
+
|
252 |
+
st.markdown("### π Optimal Post Elements")
|
253 |
+
st.markdown("""
|
254 |
+
- Length: 80-150 characters
|
255 |
+
- Hashtags: 3-5 relevant tags
|
256 |
+
- Emojis: 2-3 key emojis
|
257 |
+
- CTA: One clear action
|
258 |
+
""")
|
259 |
|
260 |
def run(self):
|
261 |
+
"""Run the Graicie application"""
|
262 |
+
self._display_header()
|
263 |
+
self._display_sidebar()
|
264 |
|
265 |
# Main content area
|
266 |
col1, col2 = st.columns([2, 1])
|
267 |
|
268 |
with col1:
|
269 |
+
st.subheader("π± Try an Example Post")
|
270 |
+
selected_example = st.selectbox(
|
271 |
+
"Select an example:",
|
272 |
+
list(self.example_posts.keys())
|
273 |
+
)
|
274 |
+
|
275 |
+
if selected_example:
|
276 |
+
example_text = self.example_posts[selected_example]
|
277 |
+
st.text_area("Example Post", example_text, height=100, disabled=True)
|
278 |
+
if st.button("Analyze Example", use_container_width=True):
|
279 |
+
with error_handler("example analysis"):
|
280 |
+
results = self.agent.analyze_post(example_text)
|
281 |
+
self._display_metrics(results)
|
282 |
|
283 |
st.subheader("π Analyze Your Post")
|
284 |
user_post = st.text_area(
|
|
|
289 |
|
290 |
if st.button("π Analyze My Post", use_container_width=True):
|
291 |
if user_post:
|
292 |
+
with error_handler("user post analysis"):
|
293 |
+
results = self.agent.analyze_post(user_post)
|
294 |
+
self._display_metrics(results)
|
295 |
else:
|
296 |
st.warning("Please enter some content to analyze!")
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
# Footer
|
299 |
st.markdown(
|
300 |
"""
|
301 |
+
<div style='text-align: center; padding: 20px;'>
|
302 |
+
<p style='color: #666;'>
|
|
|
303 |
Powered by LLaMA 3 & Groq | Made with β€οΈ by Project Graicie Team |
|
304 |
Β© 2024 Project Graicie
|
305 |
</p>
|
|
|
308 |
unsafe_allow_html=True,
|
309 |
)
|
310 |
|
|
|
311 |
if __name__ == "__main__":
|
312 |
+
try:
|
313 |
+
app = GraicieApp()
|
314 |
+
app.run()
|
315 |
+
except Exception as e:
|
316 |
+
logger.error(f"Application failed to start: {str(e)}")
|
317 |
+
st.error("Application failed to start. Please check the logs.")
|