Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,44 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def predict(source, translation1, translation2):
|
4 |
model_input = "Source: {} Translation 0: {} Translation 1: {}".format(source, translation1, translation2)
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
source_textbox = gr.Textbox(label="Source", info="Source Sentence", value="Le chat est sur la tapis.")
|
8 |
translation1_textbox = gr.Textbox(label="Translation 1", info="Translation 1", value="The cat is on the bed.")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModel, PretrainedConfig, PreTrainedModel, MT5EncoderModel
|
3 |
+
|
4 |
+
class MTRankerConfig(PretrainedConfig):
|
5 |
+
|
6 |
+
def __init__(self, backbone='google/mt5-base', **kwargs):
|
7 |
+
self.backbone = backbone
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class MTRanker(PreTrainedModel):
|
13 |
+
config_class = MTRankerConfig
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__(config)
|
17 |
+
self.encoder = MT5EncoderModel.from_pretrained(config.backbone)
|
18 |
+
self.num_classes = 2
|
19 |
+
self.classifier = torch.nn.Linear(self.encoder.config.hidden_size, self.num_classes)
|
20 |
+
|
21 |
+
def forward(self, input_ids, attention_mask):
|
22 |
+
encoder_output = self.encoder(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
|
23 |
+
seq_lengths = torch.sum(attention_mask, keepdim=True, dim=1)
|
24 |
+
pooled_hidden_state = torch.sum(encoder_output * attention_mask.unsqueeze(-1).expand(-1, -1, self.encoder.config.hidden_size), dim=1)
|
25 |
+
pooled_hidden_state /= seq_lengths
|
26 |
+
prediction_logit = self.classifier(pooled_hidden_state)
|
27 |
+
return prediction_logit
|
28 |
+
|
29 |
+
|
30 |
+
config = MTRankerConfig(backbone='google/mt5-base')
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(config.backbone)
|
32 |
+
model = MTRanker.from_pretrained('ibraheemmoosa/mt-ranker-base')
|
33 |
|
34 |
def predict(source, translation1, translation2):
|
35 |
model_input = "Source: {} Translation 0: {} Translation 1: {}".format(source, translation1, translation2)
|
36 |
+
inputs = tokenizer([model_input], max_length=512, padding='max_length', truncation=True, return_tensors='pt')
|
37 |
+
with autocast(dtype=torch.bfloat16):
|
38 |
+
logits = model(inputs.input_ids, inputs.attention_mask)
|
39 |
+
output_scores = torch.softmax(logits, dim=1)
|
40 |
+
output_scores = output_scores[0]
|
41 |
+
return {'Translation 1': output_scores[0], 'Translation 2': output_scores[1]}
|
42 |
|
43 |
source_textbox = gr.Textbox(label="Source", info="Source Sentence", value="Le chat est sur la tapis.")
|
44 |
translation1_textbox = gr.Textbox(label="Translation 1", info="Translation 1", value="The cat is on the bed.")
|