iakarshu commited on
Commit
dcf7eb6
·
1 Parent(s): 0089672

Upload dataset.py

Browse files
Files changed (1) hide show
  1. dataset.py +150 -0
dataset.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import numpy as np
4
+ import pytesseract
5
+ from PIL import Image, ImageDraw
6
+
7
+ PAD_TOKEN_BOX = [0, 0, 0, 0]
8
+ max_seq_len = 512
9
+
10
+ ## Function: 1
11
+ ## Purpose: Resize and align the bounding box for the different sized image
12
+
13
+ def resize_align_bbox(bbox, orig_w, orig_h, target_w, target_h):
14
+ x_scale = target_w / orig_w
15
+ y_scale = target_h / orig_h
16
+ orig_left, orig_top, orig_right, orig_bottom = bbox
17
+ x = int(np.round(orig_left * x_scale))
18
+ y = int(np.round(orig_top * y_scale))
19
+ xmax = int(np.round(orig_right * x_scale))
20
+ ymax = int(np.round(orig_bottom * y_scale))
21
+ return [x, y, xmax, ymax]
22
+
23
+ ## Function: 2
24
+ ## Purpose: Reading the json file from the path and return the dictionary
25
+
26
+ def load_json_file(file_path):
27
+ with open(file_path, 'r') as f:
28
+ data = json.load(f)
29
+ return data
30
+
31
+ ## Function: 3
32
+ ## Purpose: Getting the address of specific file type, eg: .pdf, .tif, so and so
33
+
34
+ def get_specific_file(path, last_entry = 'tif'):
35
+ base_path = path
36
+ for i in os.listdir(path):
37
+ if i.endswith(last_entry):
38
+ return os.path.join(base_path, i)
39
+
40
+ return '-1'
41
+
42
+
43
+ ## Function: 4
44
+
45
+
46
+ def get_tokens_with_boxes(unnormalized_word_boxes, list_of_words, tokenizer, pad_token_id = 0, pad_token_box = [0, 0, 0, 0], max_seq_len = 512):
47
+
48
+ '''
49
+ This function returns two items:
50
+ 1. unnormalized_token_boxes -> a list of len = max_seq_len, containing the boxes corresponding to the tokenized words,
51
+ one box might repeat as per the tokenization procedure
52
+ 2. tokenized_words -> tokenized words corresponding to the tokenizer and the list_of_words
53
+ '''
54
+
55
+ assert len(unnormalized_word_boxes) == len(list_of_words), "Bounding box length!= total words length"
56
+
57
+ length_of_box = len(unnormalized_word_boxes)
58
+ unnormalized_token_boxes = []
59
+ tokenized_words = []
60
+
61
+ for box, word in zip(unnormalized_word_boxes, list_of_words):
62
+ current_tokens = tokenizer(word, add_special_tokens = False).input_ids
63
+ unnormalized_token_boxes.extend([box]*len(current_tokens))
64
+ tokenized_words.extend(current_tokens)
65
+
66
+ if len(unnormalized_token_boxes)<max_seq_len:
67
+ unnormalized_token_boxes.extend([pad_token_box] * (max_seq_len-len(unnormalized_token_boxes)))
68
+
69
+ if len(tokenized_words)< max_seq_len:
70
+ tokenized_words.extend([pad_token_id]* (max_seq_len-len(tokenized_words)))
71
+
72
+ return unnormalized_token_boxes[:max_seq_len], tokenized_words[:max_seq_len]
73
+
74
+ ## Function: 5
75
+ ## Function, which would only be used when the below function is used
76
+
77
+ def get_topleft_bottomright_coordinates(df_row):
78
+ left, top, width, height = df_row["left"], df_row["top"], df_row["width"], df_row["height"]
79
+ return [left, top, left + width, top + height]
80
+
81
+ ## Function: 6
82
+ ## If the OCR is not provided, this function would help in extracting OCR
83
+
84
+
85
+ def apply_ocr(tif_path):
86
+ """
87
+ Returns words and its bounding boxes from an image
88
+ """
89
+ img = Image.open(tif_path).convert("RGB")
90
+
91
+ ocr_df = pytesseract.image_to_data(img, output_type="data.frame")
92
+ ocr_df = ocr_df.dropna().reset_index(drop=True)
93
+ float_cols = ocr_df.select_dtypes("float").columns
94
+ ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
95
+ ocr_df = ocr_df.replace(r"^\s*$", np.nan, regex=True)
96
+ ocr_df = ocr_df.dropna().reset_index(drop=True)
97
+ words = list(ocr_df.text.apply(lambda x: str(x).strip()))
98
+ actual_bboxes = ocr_df.apply(get_topleft_bottomright_coordinates, axis=1).values.tolist()
99
+
100
+ # add as extra columns
101
+ assert len(words) == len(actual_bboxes)
102
+ return {"words": words, "bbox": actual_bboxes}
103
+
104
+
105
+ ## Function: 7
106
+ ## Merging all the above functions, for the purpose of extracting the image, bounding box and the tokens (sentence wise)
107
+
108
+
109
+ def create_features(
110
+ image_path,
111
+ tokenizer,
112
+ target_size = (1000, 1000),
113
+ max_seq_length=512,
114
+ use_ocr = False,
115
+ bounding_box = None,
116
+ words = None
117
+ ):
118
+
119
+ '''
120
+ We assume that the bounding box provided are given as per the image scale (i.e not normalized), so that we just need to scale it as per the ratio
121
+ '''
122
+
123
+
124
+ img = Image.open(image_path).convert("RGB")
125
+ width_old, height_old = img.size
126
+ img = img.resize(target_size)
127
+ width, height = img.size
128
+
129
+ ## Rescaling the bounding box as per the image size
130
+
131
+
132
+ if (use_ocr == False) and (bounding_box == None or words == None):
133
+ raise Exception('Please provide the bounding box and words or pass the argument "use_ocr" = True')
134
+
135
+ if use_ocr == True:
136
+ entries = apply_ocr(image_path)
137
+ bounding_box = entries["bbox"]
138
+ words = entries["words"]
139
+
140
+ bounding_box = list(map(lambda x: resize_align_bbox(x,width_old,height_old, width, height), bounding_box))
141
+ boxes, tokenized_words = get_tokens_with_boxes(unnormalized_word_boxes = bounding_box,
142
+ list_of_words = words,
143
+ tokenizer = tokenizer,
144
+ pad_token_id = 0,
145
+ pad_token_box = PAD_TOKEN_BOX,
146
+ max_seq_len = max_seq_length
147
+ )
148
+
149
+
150
+ return img, boxes, tokenized_words