Spaces:
Runtime error
Runtime error
File size: 1,913 Bytes
a6a2aba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
from dotenv import load_dotenv
from fastapi import FastAPI, Request, HTTPException
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
from langchain import HuggingFaceHub
from huggingface_hub import InferenceClient
load_dotenv()
hf_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
#starchat_repo_id = os.environ.get('starchat_repo_id')
#repo_id=os.environ.get('repo_id')
#port = os.getenv('port')
llm = HuggingFaceHub(repo_id=starchat_repo_id, # for StarChat
huggingfacehub_api_token=hf_token,
model_kwargs={"min_length": 512, # for StarChat
"max_new_tokens": 1024, "do_sample": True, # for StarChat
"temperature": 0.01,
"top_k": 50,
"top_p": 0.95, "eos_token_id": 49155})
chain = load_summarize_chain(llm, chain_type="stuff")
app = FastAPI()
@app.post('/')
async def home_api(request: Request):
data = await request.json()
user_query = data['user_question']
print(user_query)
return {"Message": "FastAPI Home API Deploy Success on HF"}
@app.post('/api/chat')
async def chat(request: Request):
data = await request.json()
user_query = data['user_question']
print(user_query)
if user_query.strip() != "":
try:
loader = WebBaseLoader(user_query)
print(user_query)
docs = loader.load()
result = chain.run(docs)
print("AI Summarization: " + result)
return {'response': result}
except Exception as e:
err_msg = "Wrong URL or URL not parsable."
print(err_msg)
raise HTTPException(status_code=400, detail=err_msg)
else:
raise HTTPException(status_code=400, detail="Invalid user question") |