StyleGAN3 / model.py
hysts's picture
hysts HF staff
Update
b13b851
raw
history blame
4.14 kB
from __future__ import annotations
import os
import pathlib
import pickle
import sys
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
current_dir = pathlib.Path(__file__).parent
submodule_dir = current_dir / 'stylegan3'
sys.path.insert(0, submodule_dir.as_posix())
HF_TOKEN = os.environ['HF_TOKEN']
class Model:
MODEL_NAME_DICT = {
'AFHQv2-512-R': 'stylegan3-r-afhqv2-512x512.pkl',
'FFHQ-1024-R': 'stylegan3-r-ffhq-1024x1024.pkl',
'FFHQ-U-256-R': 'stylegan3-r-ffhqu-256x256.pkl',
'FFHQ-U-1024-R': 'stylegan3-r-ffhqu-1024x1024.pkl',
'MetFaces-1024-R': 'stylegan3-r-metfaces-1024x1024.pkl',
'MetFaces-U-1024-R': 'stylegan3-r-metfacesu-1024x1024.pkl',
'AFHQv2-512-T': 'stylegan3-t-afhqv2-512x512.pkl',
'FFHQ-1024-T': 'stylegan3-t-ffhq-1024x1024.pkl',
'FFHQ-U-256-T': 'stylegan3-t-ffhqu-256x256.pkl',
'FFHQ-U-1024-T': 'stylegan3-t-ffhqu-1024x1024.pkl',
'MetFaces-1024-T': 'stylegan3-t-metfaces-1024x1024.pkl',
'MetFaces-U-1024-T': 'stylegan3-t-metfacesu-1024x1024.pkl',
}
def __init__(self, device: str | torch.device):
self.device = torch.device(device)
self._download_all_models()
self.model_name = 'FFHQ-1024-R'
self.model = self._load_model(self.model_name)
def _load_model(self, model_name: str) -> nn.Module:
file_name = self.MODEL_NAME_DICT[model_name]
path = hf_hub_download('hysts/StyleGAN3',
f'models/{file_name}',
use_auth_token=HF_TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(self.device)
return model
def set_model(self, model_name: str) -> None:
if model_name == self.model_name:
return
self.model_name = model_name
self.model = self._load_model(model_name)
def _download_all_models(self):
for name in self.MODEL_NAME_DICT.keys():
self._load_model(name)
@staticmethod
def make_transform(translate: tuple[float, float],
angle: float) -> np.ndarray:
mat = np.eye(3)
sin = np.sin(angle / 360 * np.pi * 2)
cos = np.cos(angle / 360 * np.pi * 2)
mat[0][0] = cos
mat[0][1] = sin
mat[0][2] = translate[0]
mat[1][0] = -sin
mat[1][1] = cos
mat[1][2] = translate[1]
return mat
def generate_z(self, seed: int) -> torch.Tensor:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = np.random.RandomState(seed).randn(1, self.model.z_dim)
return torch.from_numpy(z).float().to(self.device)
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
torch.uint8)
return tensor.cpu().numpy()
def set_transform(self, tx: float, ty: float, angle: float) -> None:
mat = self.make_transform((tx, ty), angle)
mat = np.linalg.inv(mat)
self.model.synthesis.input.transform.copy_(torch.from_numpy(mat))
@torch.inference_mode()
def generate(self, z: torch.Tensor, label: torch.Tensor,
truncation_psi: float) -> torch.Tensor:
return self.model(z, label, truncation_psi=truncation_psi)
def generate_image(self, seed: int, truncation_psi: float, tx: float,
ty: float, angle: float) -> np.ndarray:
self.set_transform(tx, ty, angle)
z = self.generate_z(seed)
label = torch.zeros([1, self.model.c_dim], device=self.device)
out = self.generate(z, label, truncation_psi)
out = self.postprocess(out)
return out[0]
def set_model_and_generate_image(self, model_name: str, seed: int,
truncation_psi: float, tx: float,
ty: float, angle: float) -> np.ndarray:
self.set_model(model_name)
return self.generate_image(seed, truncation_psi, tx, ty, angle)