StyleGAN3 / app.py
hysts's picture
hysts HF staff
Update
9f40a8f
raw
history blame
5.73 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'stylegan3')
ORIGINAL_REPO_URL = 'https://github.com/NVlabs/stylegan3'
TITLE = 'NVlabs/stylegan3'
DESCRIPTION = f'This is a demo for {ORIGINAL_REPO_URL}.'
SAMPLE_IMAGE_DIR = 'https://huggingface.co./spaces/hysts/StyleGAN3/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### AFHQv2
- size: 512x512
- seed: 0-99
![AFHQv2 samples]({SAMPLE_IMAGE_DIR}/afhqv2.jpg)
### FFHQ
- size: 1024x1024
- seed: 0-99
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### FFHQ-U
- size: 1024x1024
- seed: 0-99
![FFHQ-U samples]({SAMPLE_IMAGE_DIR}/ffhq-u.jpg)
### MetFaces
- size: 1024x1024
- seed: 0-99
![MetFaces samples]({SAMPLE_IMAGE_DIR}/metfaces.jpg)
### MetFaces-U
- size: 1024x1024
- seed: 0-99
![MetFaces-U samples]({SAMPLE_IMAGE_DIR}/metfaces-u.jpg)
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
mat = np.eye(3)
sin = np.sin(angle / 360 * np.pi * 2)
cos = np.cos(angle / 360 * np.pi * 2)
mat[0][0] = cos
mat[0][1] = sin
mat[0][2] = translate[0]
mat[1][0] = -sin
mat[1][1] = cos
mat[1][2] = translate[1]
return mat
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
tx: float, ty: float, angle: float,
model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
mat = make_transform((tx, ty), angle)
mat = np.linalg.inv(mat)
model.synthesis.input.transform.copy_(torch.from_numpy(mat))
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(file_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN3',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
args = parse_args()
device = torch.device(args.device)
model_names = {
'AFHQv2-512-R': 'stylegan3-r-afhqv2-512x512.pkl',
'FFHQ-1024-R': 'stylegan3-r-ffhq-1024x1024.pkl',
'FFHQ-U-256-R': 'stylegan3-r-ffhqu-256x256.pkl',
'FFHQ-U-1024-R': 'stylegan3-r-ffhqu-1024x1024.pkl',
'MetFaces-1024-R': 'stylegan3-r-metfaces-1024x1024.pkl',
'MetFaces-U-1024-R': 'stylegan3-r-metfacesu-1024x1024.pkl',
'AFHQv2-512-T': 'stylegan3-t-afhqv2-512x512.pkl',
'FFHQ-1024-T': 'stylegan3-t-ffhq-1024x1024.pkl',
'FFHQ-U-256-T': 'stylegan3-t-ffhqu-256x256.pkl',
'FFHQ-U-1024-T': 'stylegan3-t-ffhqu-1024x1024.pkl',
'MetFaces-1024-T': 'stylegan3-t-metfaces-1024x1024.pkl',
'MetFaces-U-1024-T': 'stylegan3-t-metfacesu-1024x1024.pkl',
}
model_dict = {
name: load_model(file_name, device)
for name, file_name in model_names.items()
}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(list(model_names.keys()),
type='value',
default='FFHQ-1024-R',
label='Model'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'),
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()