from __future__ import annotations import pathlib import pickle import sys import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download current_dir = pathlib.Path(__file__).parent submodule_dir = current_dir / "stylegan3" sys.path.insert(0, submodule_dir.as_posix()) class Model: MODEL_NAME_DICT = { "AFHQ-Cat-512": "stylegan2-afhqcat-512x512.pkl", "AFHQ-Dog-512": "stylegan2-afhqdog-512x512.pkl", "AFHQv2-512": "stylegan2-afhqv2-512x512.pkl", "AFHQ-Wild-512": "stylegan2-afhqwild-512x512.pkl", "BreCaHAD-512": "stylegan2-brecahad-512x512.pkl", "CelebA-HQ-256": "stylegan2-celebahq-256x256.pkl", "CIFAR-10": "stylegan2-cifar10-32x32.pkl", "FFHQ-256": "stylegan2-ffhq-256x256.pkl", "FFHQ-512": "stylegan2-ffhq-512x512.pkl", "FFHQ-1024": "stylegan2-ffhq-1024x1024.pkl", "FFHQ-U-256": "stylegan2-ffhqu-256x256.pkl", "FFHQ-U-1024": "stylegan2-ffhqu-1024x1024.pkl", "LSUN-Dog-256": "stylegan2-lsundog-256x256.pkl", "MetFaces-1024": "stylegan2-metfaces-1024x1024.pkl", "MetFaces-U-1024": "stylegan2-metfacesu-1024x1024.pkl", } def __init__(self): self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self._download_all_models() self.model_name = "FFHQ-1024" self.model = self._load_model(self.model_name) def _load_model(self, model_name: str) -> nn.Module: file_name = self.MODEL_NAME_DICT[model_name] path = hf_hub_download("hysts/StyleGAN2", f"models/{file_name}") with open(path, "rb") as f: model = pickle.load(f)["G_ema"] model.eval() model.to(self.device) return model def set_model(self, model_name: str) -> None: if model_name == self.model_name: return self.model_name = model_name self.model = self._load_model(model_name) def _download_all_models(self): for name in self.MODEL_NAME_DICT.keys(): self._load_model(name) def generate_z(self, seed: int) -> torch.Tensor: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = np.random.RandomState(seed).randn(1, self.model.z_dim) return torch.from_numpy(z).float().to(self.device) def postprocess(self, tensor: torch.Tensor) -> np.ndarray: tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return tensor.cpu().numpy() def make_label_tensor(self, class_index: int) -> torch.Tensor: class_index = round(class_index) class_index = min(max(0, class_index), self.model.c_dim - 1) class_index = torch.tensor(class_index, dtype=torch.long) label = torch.zeros([1, self.model.c_dim], device=self.device) if class_index >= 0: label[:, class_index] = 1 return label @torch.inference_mode() def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor: return self.model(z, label, truncation_psi=truncation_psi) def generate_image(self, seed: int, truncation_psi: float, class_index: int) -> np.ndarray: z = self.generate_z(seed) label = self.make_label_tensor(class_index) out = self.generate(z, label, truncation_psi) out = self.postprocess(out) return out[0] def set_model_and_generate_image( self, model_name: str, seed: int, truncation_psi: float, class_index: int ) -> np.ndarray: self.set_model(model_name) return self.generate_image(seed, truncation_psi, class_index)