#!/usr/bin/env python from __future__ import annotations import functools import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, "StyleGAN-Human") TITLE = "StyleGAN-Human (Interpolation)" DESCRIPTION = "https://github.com/stylegan-human/StyleGAN-Human" def load_model(file_name: str, device: torch.device) -> nn.Module: path = hf_hub_download("public-data/StyleGAN-Human", f"models/{file_name}") with open(path, "rb") as f: model = pickle.load(f)["G_ema"] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float() @torch.inference_mode() def generate_interpolated_images( seed0: int, psi0: float, seed1: int, psi1: float, num_intermediate: int, model: nn.Module, device: torch.device ) -> list[np.ndarray]: seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max)) seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max)) z0 = generate_z(model.z_dim, seed0, device) z1 = generate_z(model.z_dim, seed1, device) vec = z1 - z0 dvec = vec / (num_intermediate + 1) zs = [z0 + dvec * i for i in range(num_intermediate + 2)] dpsi = (psi1 - psi0) / (num_intermediate + 1) psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)] label = torch.zeros([1, model.c_dim], device=device) res = [] for z, psi in zip(zs, psis): out = model(z, label, truncation_psi=psi, force_fp32=True) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) out = out[0].cpu().numpy() res.append(out) return res device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model("stylegan_human_v2_1024.pkl", device) fn = functools.partial(generate_interpolated_images, model=model, device=device) gr.Interface( fn=fn, inputs=[ gr.Slider(label="Seed 1", minimum=0, maximum=100000, step=1, value=0, randomize=True), gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7), gr.Slider(label="Seed 2", minimum=0, maximum=100000, step=1, value=1, randomize=True), gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7), gr.Slider(label="Number of Intermediate Frames", minimum=0, maximum=21, step=1, value=7), ], outputs=gr.Gallery(label="Output Images", type="numpy"), title=TITLE, description=DESCRIPTION, ).queue(max_size=10).launch()