|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import pickle |
|
import sys |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
|
|
sys.path.insert(0, "StyleGAN-Human") |
|
|
|
TITLE = "StyleGAN-Human (Interpolation)" |
|
DESCRIPTION = "https://github.com/stylegan-human/StyleGAN-Human" |
|
|
|
|
|
def load_model(file_name: str, device: torch.device) -> nn.Module: |
|
path = hf_hub_download("public-data/StyleGAN-Human", f"models/{file_name}") |
|
with open(path, "rb") as f: |
|
model = pickle.load(f)["G_ema"] |
|
model.eval() |
|
model.to(device) |
|
with torch.inference_mode(): |
|
z = torch.zeros((1, model.z_dim)).to(device) |
|
label = torch.zeros([1, model.c_dim], device=device) |
|
model(z, label, force_fp32=True) |
|
return model |
|
|
|
|
|
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: |
|
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float() |
|
|
|
|
|
@torch.inference_mode() |
|
def generate_interpolated_images( |
|
seed0: int, psi0: float, seed1: int, psi1: float, num_intermediate: int, model: nn.Module, device: torch.device |
|
) -> list[np.ndarray]: |
|
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max)) |
|
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max)) |
|
|
|
z0 = generate_z(model.z_dim, seed0, device) |
|
z1 = generate_z(model.z_dim, seed1, device) |
|
vec = z1 - z0 |
|
dvec = vec / (num_intermediate + 1) |
|
zs = [z0 + dvec * i for i in range(num_intermediate + 2)] |
|
dpsi = (psi1 - psi0) / (num_intermediate + 1) |
|
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)] |
|
|
|
label = torch.zeros([1, model.c_dim], device=device) |
|
|
|
res = [] |
|
for z, psi in zip(zs, psis): |
|
out = model(z, label, truncation_psi=psi, force_fp32=True) |
|
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
out = out[0].cpu().numpy() |
|
res.append(out) |
|
return res |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model = load_model("stylegan_human_v2_1024.pkl", device) |
|
fn = functools.partial(generate_interpolated_images, model=model, device=device) |
|
|
|
gr.Interface( |
|
fn=fn, |
|
inputs=[ |
|
gr.Slider(label="Seed 1", minimum=0, maximum=100000, step=1, value=0, randomize=True), |
|
gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7), |
|
gr.Slider(label="Seed 2", minimum=0, maximum=100000, step=1, value=1, randomize=True), |
|
gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7), |
|
gr.Slider(label="Number of Intermediate Frames", minimum=0, maximum=21, step=1, value=7), |
|
], |
|
outputs=gr.Gallery(label="Output Images", type="numpy"), |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
).queue(max_size=10).launch() |
|
|