File size: 4,442 Bytes
57ce82c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

sys.path.insert(0, 'StyleGAN-Human')

TITLE = 'StyleGAN-Human (Interpolation)'
DESCRIPTION = 'This is a demo for https://github.com/stylegan-human/StyleGAN-Human.'
ARTICLE = None

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_model(file_name: str, device: torch.device) -> nn.Module:
    path = hf_hub_download('hysts/StyleGAN-Human',
                           f'models/{file_name}',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = pickle.load(f)['G_ema']
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label, force_fp32=True)
    return model


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_interpolated_images(
        seed0: int, psi0: float, seed1: int, psi1: float,
        num_intermediate: int, model: nn.Module,
        device: torch.device) -> tuple[list[np.ndarray], np.ndarray]:
    seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
    seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))

    z0 = generate_z(model.z_dim, seed0, device)
    z1 = generate_z(model.z_dim, seed1, device)
    vec = z1 - z0
    dvec = vec / (num_intermediate + 1)
    zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
    dpsi = (psi1 - psi0) / (num_intermediate + 1)
    psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]

    label = torch.zeros([1, model.c_dim], device=device)

    res = []
    for z, psi in zip(zs, psis):
        out = model(z, label, truncation_psi=psi, force_fp32=True)
        out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
            torch.uint8)
        out = out[0].cpu().numpy()
        res.append(out)
    concatenated = np.hstack(res)
    return res, concatenated


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    model = load_model('stylegan_human_v2_1024.pkl', device)

    func = functools.partial(generate_interpolated_images,
                             model=model,
                             device=device)
    func = functools.update_wrapper(func, generate_interpolated_images)

    gr.Interface(
        func,
        [
            gr.inputs.Number(default=0, label='Seed 1'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi 1'),
            gr.inputs.Number(default=1, label='Seed 2'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
            gr.inputs.Slider(0,
                             21,
                             step=1,
                             default=7,
                             label='Number of Intermediate Frames'),
        ],
        [
            gr.outputs.Carousel(gr.outputs.Image(type='numpy'),
                                label='Output Images'),
            gr.outputs.Image(type='numpy', label='Concatenated'),
        ],
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()