File size: 4,442 Bytes
57ce82c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'StyleGAN-Human')
TITLE = 'StyleGAN-Human (Interpolation)'
DESCRIPTION = 'This is a demo for https://github.com/stylegan-human/StyleGAN-Human.'
ARTICLE = None
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_model(file_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN-Human',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label, force_fp32=True)
return model
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_interpolated_images(
seed0: int, psi0: float, seed1: int, psi1: float,
num_intermediate: int, model: nn.Module,
device: torch.device) -> tuple[list[np.ndarray], np.ndarray]:
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
z0 = generate_z(model.z_dim, seed0, device)
z1 = generate_z(model.z_dim, seed1, device)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
label = torch.zeros([1, model.c_dim], device=device)
res = []
for z, psi in zip(zs, psis):
out = model(z, label, truncation_psi=psi, force_fp32=True)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
torch.uint8)
out = out[0].cpu().numpy()
res.append(out)
concatenated = np.hstack(res)
return res, concatenated
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
model = load_model('stylegan_human_v2_1024.pkl', device)
func = functools.partial(generate_interpolated_images,
model=model,
device=device)
func = functools.update_wrapper(func, generate_interpolated_images)
gr.Interface(
func,
[
gr.inputs.Number(default=0, label='Seed 1'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi 1'),
gr.inputs.Number(default=1, label='Seed 2'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
gr.inputs.Slider(0,
21,
step=1,
default=7,
label='Number of Intermediate Frames'),
],
[
gr.outputs.Carousel(gr.outputs.Image(type='numpy'),
label='Output Images'),
gr.outputs.Image(type='numpy', label='Concatenated'),
],
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|