#!/usr/bin/env python import gradio as gr import PIL.Image import spaces import torch from diffusers.pipelines import BlipDiffusionPipeline from settings import DEFAULT_NEGATIVE_PROMPT, MAX_INFERENCE_STEPS from utils import MAX_SEED, randomize_seed_fn device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): pipe = BlipDiffusionPipeline.from_pretrained("Salesforce/blipdiffusion", torch_dtype=torch.float16).to(device) @spaces.GPU def run( condition_image: PIL.Image.Image, condition_subject: str, target_subject: str, prompt: str, negative_prompt: str = DEFAULT_NEGATIVE_PROMPT, seed: int = 0, guidance_scale: float = 7.5, num_inference_steps: int = 25, ) -> PIL.Image.Image: if num_inference_steps > MAX_INFERENCE_STEPS: error_message = f"Number of inference steps must be less than {MAX_INFERENCE_STEPS}" raise gr.Error(error_message) return pipe( prompt, condition_image, condition_subject, target_subject, generator=torch.Generator(device=device).manual_seed(seed), guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, neg_prompt=negative_prompt, height=512, width=512, ).images[0] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): condition_image = gr.Image(label="Condition Image") condition_subject = gr.Textbox(label="Condition Subject") target_subject = gr.Textbox(label="Target Subject") prompt = gr.Textbox(label="Prompt") run_button = gr.Button() with gr.Accordion(label="Advanced options", open=False): negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=MAX_INFERENCE_STEPS, step=1, value=25, ) with gr.Column(): result = gr.Image(label="Result") gr.Examples( examples=[ [ "images/dog.png", "dog", "dog", "swimming underwater", ], ], inputs=[ condition_image, condition_subject, target_subject, prompt, ], outputs=result, fn=run, ) inputs = [ condition_image, condition_subject, target_subject, prompt, negative_prompt, seed, guidance_scale, num_inference_steps, ] gr.on( triggers=[ condition_subject.submit, target_subject.submit, prompt.submit, negative_prompt.submit, run_button.click, ], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, api_name=False, concurrency_limit=None, ).then( fn=run, inputs=inputs, outputs=result, api_name="run-zero-shot", concurrency_id="gpu", concurrency_limit=1, ) if __name__ == "__main__": demo.queue(max_size=20).launch()