Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import gradio as gr | |
import PIL.Image | |
import spaces | |
import torch | |
from controlnet_aux import CannyDetector | |
from diffusers.pipelines import BlipDiffusionControlNetPipeline | |
from settings import DEFAULT_NEGATIVE_PROMPT, MAX_INFERENCE_STEPS | |
from utils import MAX_SEED, randomize_seed_fn | |
canny_detector = CannyDetector() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
pipe = BlipDiffusionControlNetPipeline.from_pretrained( | |
"Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16 | |
).to(device) | |
else: | |
pipe = None | |
def run( | |
condition_image: PIL.Image.Image, | |
style_image: PIL.Image.Image, | |
condition_subject: str, | |
style_subject: str, | |
prompt: str, | |
negative_prompt: str = DEFAULT_NEGATIVE_PROMPT, | |
seed: int = 0, | |
guidance_scale: float = 7.5, | |
num_inference_steps: int = 25, | |
) -> PIL.Image.Image: | |
if num_inference_steps > MAX_INFERENCE_STEPS: | |
error_message = f"Number of inference steps must be less than {MAX_INFERENCE_STEPS}" | |
raise gr.Error(error_message) | |
condition_image = canny_detector(condition_image, 30, 70, output_type="pil") | |
return pipe( | |
prompt, | |
style_image, | |
condition_image, | |
style_subject, | |
condition_subject, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
neg_prompt=negative_prompt, | |
height=512, | |
width=512, | |
).images[0] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
condition_image = gr.Image(label="Condition Image") | |
style_image = gr.Image(label="Style Image") | |
condition_subject = gr.Textbox(label="Condition Subject") | |
style_subject = gr.Textbox(label="Style Subject") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button() | |
with gr.Accordion(label="Advanced options", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0, | |
maximum=10, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=MAX_INFERENCE_STEPS, | |
step=1, | |
value=25, | |
) | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
gr.Examples( | |
examples=[ | |
[ | |
"images/kettle.jpg", | |
"images/flower.jpg", | |
"teapot", | |
"flower", | |
"on a marble table", | |
], | |
], | |
inputs=[ | |
condition_image, | |
style_image, | |
condition_subject, | |
style_subject, | |
prompt, | |
], | |
outputs=result, | |
fn=run, | |
) | |
inputs = [ | |
condition_image, | |
style_image, | |
condition_subject, | |
style_subject, | |
prompt, | |
negative_prompt, | |
seed, | |
guidance_scale, | |
num_inference_steps, | |
] | |
gr.on( | |
triggers=[ | |
condition_subject.submit, | |
style_subject.submit, | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
api_name=False, | |
concurrency_limit=None, | |
).then( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name="run-stylization", | |
concurrency_id="gpu", | |
concurrency_limit=1, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |