File size: 3,859 Bytes
0a359f0
 
 
 
 
 
 
 
5086e39
0a359f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db855c
 
0a359f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b0708
 
 
 
 
0a359f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e699f
 
 
 
 
 
 
 
0a359f0
 
 
 
15b0708
0a359f0
 
 
 
 
15b0708
 
0a359f0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python

import gradio as gr
import PIL.Image
import spaces
import torch
from diffusers.pipelines import BlipDiffusionPipeline

from settings import DEFAULT_NEGATIVE_PROMPT, MAX_INFERENCE_STEPS
from utils import MAX_SEED, randomize_seed_fn

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    pipe = BlipDiffusionPipeline.from_pretrained("Salesforce/blipdiffusion", torch_dtype=torch.float16).to(device)


@spaces.GPU
def run(
    condition_image: PIL.Image.Image,
    condition_subject: str,
    target_subject: str,
    prompt: str,
    negative_prompt: str = DEFAULT_NEGATIVE_PROMPT,
    seed: int = 0,
    guidance_scale: float = 7.5,
    num_inference_steps: int = 25,
) -> PIL.Image.Image:
    if num_inference_steps > MAX_INFERENCE_STEPS:
        error_message = f"Number of inference steps must be less than {MAX_INFERENCE_STEPS}"
        raise gr.Error(error_message)
    return pipe(
        prompt,
        condition_image,
        condition_subject,
        target_subject,
        generator=torch.Generator(device=device).manual_seed(seed),
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        neg_prompt=negative_prompt,
        height=512,
        width=512,
    ).images[0]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            condition_image = gr.Image(label="Condition Image")
            condition_subject = gr.Textbox(label="Condition Subject")
            target_subject = gr.Textbox(label="Target Subject")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button()
            with gr.Accordion(label="Advanced options", open=False):
                negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0,
                    maximum=10,
                    step=0.1,
                    value=7.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=MAX_INFERENCE_STEPS,
                    step=1,
                    value=25,
                )
        with gr.Column():
            result = gr.Image(label="Result")

    gr.Examples(
        examples=[
            [
                "images/dog.png",
                "dog",
                "dog",
                "swimming underwater",
            ],
        ],
        inputs=[
            condition_image,
            condition_subject,
            target_subject,
            prompt,
        ],
        outputs=result,
        fn=run,
    )

    inputs = [
        condition_image,
        condition_subject,
        target_subject,
        prompt,
        negative_prompt,
        seed,
        guidance_scale,
        num_inference_steps,
    ]
    gr.on(
        triggers=[
            condition_subject.submit,
            target_subject.submit,
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        api_name=False,
        concurrency_limit=None,
    ).then(
        fn=run,
        inputs=inputs,
        outputs=result,
        api_name="run-zero-shot",
        concurrency_id="gpu",
        concurrency_limit=1,
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()