Spaces:
Runtime error
Runtime error
Upload 16 files
Browse files- app.py +391 -0
- model/final2.h5/config.json +56 -0
- model/final2.h5/generation_config.json +9 -0
- model/final2.h5/pytorch_model.bin +3 -0
- model/onlineContrastive/1_Pooling/config.json +7 -0
- model/onlineContrastive/README.md +126 -0
- model/onlineContrastive/config.json +29 -0
- model/onlineContrastive/config_sentence_transformers.json +7 -0
- model/onlineContrastive/modules.json +14 -0
- model/onlineContrastive/pytorch_model.bin +3 -0
- model/onlineContrastive/sentence_bert_config.json +4 -0
- model/onlineContrastive/special_tokens_map.json +9 -0
- model/onlineContrastive/tokenizer.json +0 -0
- model/onlineContrastive/tokenizer_config.json +17 -0
- model/onlineContrastive/vocab.txt +0 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from konlpy.tag import Okt
|
4 |
+
from string import whitespace, punctuation
|
5 |
+
import re
|
6 |
+
import unicodedata
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
|
14 |
+
from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast
|
15 |
+
from transformers.optimization import get_cosine_schedule_with_warmup
|
16 |
+
from torch.utils.data import DataLoader, Dataset
|
17 |
+
from konlpy.tag import Okt
|
18 |
+
|
19 |
+
# classification
|
20 |
+
|
21 |
+
|
22 |
+
def CleanEnd(text):
|
23 |
+
email = re.compile(
|
24 |
+
r'[-_0-9a-z]+@[-_0-9a-z]+(?:\.[0-9a-z]+)+', flags=re.IGNORECASE)
|
25 |
+
url = re.compile(
|
26 |
+
r'(?:https?:\/\/)?[-_0-9a-z]+(?:\.[-_0-9a-z]+)+', flags=re.IGNORECASE)
|
27 |
+
etc = re.compile(
|
28 |
+
r'\.([^\.]*(?:기자|특파원|교수|작가|대표|논설|고문|주필|부문장|팀장|장관|원장|연구원|이사장|위원|실장|차장|부장|에세이|화백|사설|소장|단장|과장|기획자|큐레이터|저작권|평론가|©|©|ⓒ|\@|\/|=|▶|무단|전재|재배포|금지|\[|\]|\(\))[^\.]*)$')
|
29 |
+
bracket = re.compile(r'^((?:\[.+\])|(?:【.+】)|(?:<.+>)|(?:◆.+◆)\s)')
|
30 |
+
|
31 |
+
result = email.sub('', text)
|
32 |
+
result = url.sub('', result)
|
33 |
+
result = etc.sub('.', result)
|
34 |
+
result = bracket.sub('', result).strip()
|
35 |
+
return result
|
36 |
+
|
37 |
+
|
38 |
+
def TextFilter(text):
|
39 |
+
punct = ''.join([chr for chr in punctuation if chr != '%'])
|
40 |
+
filtering = re.compile(f'[{whitespace}{punct}]+')
|
41 |
+
onlyText = re.compile(r'[^\% ㄱ-ㅣ가-힣]+')
|
42 |
+
result = filtering.sub(' ', text)
|
43 |
+
result = onlyText.sub(' ', result).strip()
|
44 |
+
result = filtering.sub(' ', result)
|
45 |
+
return result
|
46 |
+
|
47 |
+
|
48 |
+
def is_clickbait(title, content, threshold=0.815):
|
49 |
+
model = SentenceTransformer(
|
50 |
+
'./model/onlineContrastive')
|
51 |
+
|
52 |
+
pattern_whitespace = re.compile(f'[{whitespace}]+')
|
53 |
+
title = unicodedata.normalize('NFC', re.sub(
|
54 |
+
pattern_whitespace, ' ', title)).strip()
|
55 |
+
title = CleanEnd(title)
|
56 |
+
title = TextFilter(title)
|
57 |
+
|
58 |
+
content = unicodedata.normalize('NFC', re.sub(
|
59 |
+
pattern_whitespace, ' ', content)).strip()
|
60 |
+
content = CleanEnd(content)
|
61 |
+
content = TextFilter(content)
|
62 |
+
|
63 |
+
# Noun Extraction
|
64 |
+
okt = Okt()
|
65 |
+
title = ' '.join(okt.nouns(title))
|
66 |
+
content = ' '.join(okt.nouns(content))
|
67 |
+
|
68 |
+
# Compute embedding
|
69 |
+
embeddings1 = model.encode(title, convert_to_tensor=True)
|
70 |
+
embeddings2 = model.encode(content, convert_to_tensor=True)
|
71 |
+
|
72 |
+
# Compute cosine-similarities
|
73 |
+
cosine_score = util.cos_sim(embeddings1, embeddings2)
|
74 |
+
similarity = cosine_score.numpy()[0][0]
|
75 |
+
|
76 |
+
if similarity < threshold:
|
77 |
+
return 0, similarity # clickbait
|
78 |
+
else:
|
79 |
+
return 1, similarity # non-clickbait
|
80 |
+
|
81 |
+
# Generation
|
82 |
+
|
83 |
+
|
84 |
+
df_train = pd.DataFrame()
|
85 |
+
df_train['input_text'] = ['1', '2']
|
86 |
+
df_train['target_text'] = ['1', '2']
|
87 |
+
|
88 |
+
|
89 |
+
def CleanEnd_g(text):
|
90 |
+
email = re.compile(
|
91 |
+
r'[-_0-9a-z]+@[-_0-9a-z]+(?:\.[0-9a-z]+)+', flags=re.IGNORECASE)
|
92 |
+
# url = re.compile(r'(?:https?:\/\/)?[-_0-9a-z]+(?:\.[-_0-9a-z]+)+', flags=re.IGNORECASE)
|
93 |
+
# etc = re.compile(r'\.([^\.]*(?:기자|특파원|교수|작가|대표|논설|고문|주필|부문장|팀장|장관|원장|연구원|이사장|위원|실장|차장|부장|에세이|화백|사설|소장|단장|과장|기획자|큐레이터|저작권|평론가|©|©|ⓒ|\@|\/|=|▶|무단|전재|재배포|금지|\[|\]|\(\))[^\.]*)$')
|
94 |
+
# bracket = re.compile(r'^((?:\[.+\])|(?:【.+】)|(?:<.+>)|(?:◆.+◆)\s)')
|
95 |
+
|
96 |
+
result = email.sub('', text)
|
97 |
+
# result = url.sub('', result)
|
98 |
+
# result = etc.sub('.', result)
|
99 |
+
# result = bracket.sub('', result).strip()
|
100 |
+
return result
|
101 |
+
|
102 |
+
|
103 |
+
class DatasetFromDataframe(Dataset):
|
104 |
+
def __init__(self, df, dataset_args):
|
105 |
+
self.data = df
|
106 |
+
self.max_length = dataset_args['max_length']
|
107 |
+
self.tokenizer = dataset_args['tokenizer']
|
108 |
+
self.start_token = '<s>'
|
109 |
+
self.end_token = '</s>'
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.data)
|
113 |
+
|
114 |
+
def create_tokens(self, text):
|
115 |
+
tokens = self.tokenizer.encode(
|
116 |
+
self.start_token + text + self.end_token)
|
117 |
+
|
118 |
+
tokenLength = len(tokens)
|
119 |
+
remain = self.max_length - tokenLength
|
120 |
+
|
121 |
+
if remain >= 0:
|
122 |
+
tokens = tokens + [self.tokenizer.pad_token_id] * remain
|
123 |
+
attention_mask = [1] * tokenLength + [0] * remain
|
124 |
+
else:
|
125 |
+
tokens = tokens[: self.max_length - 1] + \
|
126 |
+
self.tokenizer.encode(self.end_token)
|
127 |
+
attention_mask = [1] * self.max_length
|
128 |
+
|
129 |
+
return tokens, attention_mask
|
130 |
+
|
131 |
+
def __getitem__(self, index):
|
132 |
+
record = self.data.iloc[index]
|
133 |
+
|
134 |
+
question, answer = record['input_text'], record['target_text']
|
135 |
+
|
136 |
+
input_id, input_mask = self.create_tokens(question)
|
137 |
+
output_id, output_mask = self.create_tokens(answer)
|
138 |
+
|
139 |
+
label = output_id[1:(self.max_length + 1)]
|
140 |
+
label = label + (self.max_length - len(label)) * [-100]
|
141 |
+
|
142 |
+
return {
|
143 |
+
'input_ids': torch.LongTensor(input_id),
|
144 |
+
'attention_mask': torch.LongTensor(input_mask),
|
145 |
+
'decoder_input_ids': torch.LongTensor(output_id),
|
146 |
+
'decoder_attention_mask': torch.LongTensor(output_mask),
|
147 |
+
"labels": torch.LongTensor(label)
|
148 |
+
}
|
149 |
+
|
150 |
+
|
151 |
+
class OneSourceDataModule(pl.LightningDataModule):
|
152 |
+
def __init__(
|
153 |
+
self,
|
154 |
+
**kwargs
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
self.data = kwargs.get('data')
|
159 |
+
self.dataset_args = kwargs.get("dataset_args")
|
160 |
+
self.batch_size = kwargs.get("batch_size") or 32
|
161 |
+
self.train_size = kwargs.get("train_size") or 0.9
|
162 |
+
|
163 |
+
def setup(self, stage=""):
|
164 |
+
# trainset, testset = train_test_split(df_train, train_size=self.train_size, shuffle=True)
|
165 |
+
self.trainset = DatasetFromDataframe(df_train, self.dataset_args)
|
166 |
+
self.testset = DatasetFromDataframe(df_train, self.dataset_args)
|
167 |
+
|
168 |
+
def train_dataloader(self):
|
169 |
+
train = DataLoader(
|
170 |
+
self.trainset,
|
171 |
+
batch_size=self.batch_size
|
172 |
+
)
|
173 |
+
return train
|
174 |
+
|
175 |
+
def val_dataloader(self):
|
176 |
+
val = DataLoader(
|
177 |
+
self.testset,
|
178 |
+
batch_size=self.batch_size
|
179 |
+
)
|
180 |
+
return val
|
181 |
+
|
182 |
+
def test_dataloader(self):
|
183 |
+
test = DataLoader(
|
184 |
+
self.testset,
|
185 |
+
batch_size=self.batch_size
|
186 |
+
)
|
187 |
+
return test
|
188 |
+
|
189 |
+
|
190 |
+
class KoBARTConditionalGeneration(pl.LightningModule):
|
191 |
+
def __init__(self, hparams, **kwargs):
|
192 |
+
super(KoBARTConditionalGeneration, self).__init__()
|
193 |
+
self.hparams.update(hparams)
|
194 |
+
|
195 |
+
self.model = kwargs['model']
|
196 |
+
self.tokenizer = kwargs['tokenizer']
|
197 |
+
|
198 |
+
self.model.train()
|
199 |
+
|
200 |
+
def configure_optimizers(self):
|
201 |
+
param_optimizer = list(self.model.named_parameters())
|
202 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
203 |
+
|
204 |
+
optimizer_grouped_parameters = [{
|
205 |
+
'params': [
|
206 |
+
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)
|
207 |
+
],
|
208 |
+
'weight_decay': 0.01
|
209 |
+
}, {
|
210 |
+
'params': [
|
211 |
+
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
|
212 |
+
],
|
213 |
+
'weight_decay': 0.0
|
214 |
+
}]
|
215 |
+
|
216 |
+
optimizer = torch.optim.AdamW(
|
217 |
+
optimizer_grouped_parameters,
|
218 |
+
lr=self.hparams.lr
|
219 |
+
)
|
220 |
+
|
221 |
+
# num_workers = gpus * num_nodes
|
222 |
+
data_len = len(self.train_dataloader().dataset)
|
223 |
+
print(f'학습 데이터 양: {data_len}')
|
224 |
+
|
225 |
+
num_train_steps = int(
|
226 |
+
data_len / self.hparams.batch_size * self.hparams.max_epochs)
|
227 |
+
print(f'Step 수: {num_train_steps}')
|
228 |
+
|
229 |
+
num_warmup_steps = int(num_train_steps * self.hparams.warmup_ratio)
|
230 |
+
print(f'Warmup Step 수: {num_warmup_steps}')
|
231 |
+
|
232 |
+
scheduler = get_cosine_schedule_with_warmup(
|
233 |
+
optimizer,
|
234 |
+
num_warmup_steps=num_warmup_steps,
|
235 |
+
num_training_steps=num_train_steps
|
236 |
+
)
|
237 |
+
|
238 |
+
lr_scheduler = {
|
239 |
+
'scheduler': scheduler,
|
240 |
+
'monitor': 'loss',
|
241 |
+
'interval': 'step',
|
242 |
+
'frequency': 1
|
243 |
+
}
|
244 |
+
|
245 |
+
return [optimizer], [lr_scheduler]
|
246 |
+
|
247 |
+
def forward(self, inputs):
|
248 |
+
return self.model(
|
249 |
+
input_ids=inputs['input_ids'],
|
250 |
+
attention_mask=inputs['attention_mask'],
|
251 |
+
decoder_input_ids=inputs['decoder_input_ids'],
|
252 |
+
decoder_attention_mask=inputs['decoder_attention_mask'],
|
253 |
+
labels=inputs['labels'],
|
254 |
+
return_dict=True
|
255 |
+
)
|
256 |
+
|
257 |
+
def training_step(self, batch, batch_idx):
|
258 |
+
loss = self(batch).loss
|
259 |
+
return loss
|
260 |
+
|
261 |
+
def validation_step(self, batch, batch_idx):
|
262 |
+
loss = self(batch).loss
|
263 |
+
|
264 |
+
def test(self, text):
|
265 |
+
tokens = self.tokenizer.encode("<s>" + text + "</s>")
|
266 |
+
|
267 |
+
tokenLength = len(tokens)
|
268 |
+
remain = self.hparams.max_length - tokenLength
|
269 |
+
|
270 |
+
if remain >= 0:
|
271 |
+
tokens = tokens + [self.tokenizer.pad_token_id] * remain
|
272 |
+
attention_mask = [1] * tokenLength + [0] * remain
|
273 |
+
else:
|
274 |
+
tokens = tokens[: self.hparams.max_length - 1] + \
|
275 |
+
self.tokenizer.encode("</s>")
|
276 |
+
attention_mask = [1] * self.hparams.max_length
|
277 |
+
|
278 |
+
tokens = torch.LongTensor([tokens])
|
279 |
+
attention_mask = torch.LongTensor([attention_mask])
|
280 |
+
self.model = self.model
|
281 |
+
|
282 |
+
result = self.model.generate(
|
283 |
+
tokens,
|
284 |
+
max_length=self.hparams.max_length,
|
285 |
+
attention_mask=attention_mask,
|
286 |
+
num_beams=10
|
287 |
+
)[0]
|
288 |
+
|
289 |
+
a = self.tokenizer.decode(result)
|
290 |
+
return a
|
291 |
+
|
292 |
+
|
293 |
+
def generation(szContent):
|
294 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
295 |
+
"gogamza/kobart-summarization")
|
296 |
+
model1 = BartForConditionalGeneration.from_pretrained(
|
297 |
+
"gogamza/kobart-summarization")
|
298 |
+
if len(szContent) > 500:
|
299 |
+
input_ids = tokenizer.encode(szContent[:500], return_tensors="pt")
|
300 |
+
else:
|
301 |
+
input_ids = tokenizer.encode(szContent, return_tensors="pt")
|
302 |
+
|
303 |
+
summary = model1.generate(
|
304 |
+
input_ids=input_ids,
|
305 |
+
bos_token_id=model1.config.bos_token_id,
|
306 |
+
eos_token_id=model1.config.eos_token_id,
|
307 |
+
length_penalty=.3, # bigger than 1= longer, smaller than 1=shorter summary
|
308 |
+
max_length=35,
|
309 |
+
min_length=25,
|
310 |
+
num_beams=5)
|
311 |
+
szSummary = tokenizer.decode(summary[0], skip_special_tokens=True)
|
312 |
+
print(szSummary)
|
313 |
+
KoBARTModel = BartForConditionalGeneration.from_pretrained(
|
314 |
+
'./model/final2.h5')
|
315 |
+
BATCH_SIZE = 32
|
316 |
+
MAX_LENGTH = 128
|
317 |
+
EPOCHS = 0
|
318 |
+
model2 = KoBARTConditionalGeneration({
|
319 |
+
"lr": 5e-6,
|
320 |
+
"warmup_ratio": 0.1,
|
321 |
+
"batch_size": BATCH_SIZE,
|
322 |
+
"max_length": MAX_LENGTH,
|
323 |
+
"max_epochs": EPOCHS
|
324 |
+
},
|
325 |
+
tokenizer=tokenizer,
|
326 |
+
model=KoBARTModel
|
327 |
+
)
|
328 |
+
dm = OneSourceDataModule(
|
329 |
+
data=df_train,
|
330 |
+
batch_size=BATCH_SIZE,
|
331 |
+
train_size=0.9,
|
332 |
+
dataset_args={
|
333 |
+
"tokenizer": tokenizer,
|
334 |
+
"max_length": MAX_LENGTH,
|
335 |
+
}
|
336 |
+
)
|
337 |
+
trainer = pl.Trainer(
|
338 |
+
max_epochs=EPOCHS,
|
339 |
+
gpus=0
|
340 |
+
)
|
341 |
+
|
342 |
+
trainer.fit(model2, dm)
|
343 |
+
szTitle = model2.test(szSummary)
|
344 |
+
df = pd.DataFrame()
|
345 |
+
df['newTitle'] = [szTitle]
|
346 |
+
df['content'] = [szContent]
|
347 |
+
# White space, punctuation removal
|
348 |
+
pattern_whitespace = re.compile(f'[{whitespace}]+')
|
349 |
+
df['newTitle'] = df.newTitle.fillna('').replace(pattern_whitespace, ' ').map(
|
350 |
+
lambda x: unicodedata.normalize('NFC', x)).str.strip()
|
351 |
+
df['newTitle'] = df.newTitle.map(CleanEnd_g)
|
352 |
+
df['newTitle'] = df.newTitle.map(TextFilter)
|
353 |
+
return df.newTitle[0]
|
354 |
+
|
355 |
+
|
356 |
+
def new_headline(title, content):
|
357 |
+
label = is_clickbait(title, content)
|
358 |
+
if label[0] == 0:
|
359 |
+
return generation(content)
|
360 |
+
elif label[0] == 1:
|
361 |
+
return '낚시성 기사가 아닙니다.'
|
362 |
+
|
363 |
+
|
364 |
+
# gradio
|
365 |
+
with gr.Blocks() as demo1:
|
366 |
+
gr.Markdown(
|
367 |
+
"""
|
368 |
+
<h1 align="center">
|
369 |
+
clickbait news classifier and new headline generator
|
370 |
+
</h1>
|
371 |
+
""")
|
372 |
+
|
373 |
+
gr.Markdown(
|
374 |
+
"""
|
375 |
+
뉴스 기사 제목과 본문을 입력하면 낚시성 기사인지 분류하고,
|
376 |
+
낚시성 기사이면 새로운 제목을 생성해주는 프로그램입니다.
|
377 |
+
""")
|
378 |
+
|
379 |
+
with gr.Row():
|
380 |
+
with gr.Column():
|
381 |
+
inputs = [gr.Textbox(placeholder="뉴스기사 제목을 입력해주세요", label='headline'),
|
382 |
+
gr.Textbox(
|
383 |
+
lines=10, placeholder="뉴스기사 본문을 입력해주세요", label='content')]
|
384 |
+
with gr.Row():
|
385 |
+
btn = gr.Button("결과 출력")
|
386 |
+
with gr.Column():
|
387 |
+
output = gr.Text(label='Result')
|
388 |
+
btn.click(fn=new_headline, inputs=inputs, outputs=output)
|
389 |
+
|
390 |
+
if __name__ == "__main__":
|
391 |
+
demo1.launch()
|
model/final2.h5/config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/drive/My Drive/23 U 4-1/\ud14d\uc2a4\ud2b8\ub9c8\uc774\ub2dd/\uae30\ub9d0\ud504\ub85c\uc81d\ud2b8/final2.h5",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": false,
|
7 |
+
"architectures": [
|
8 |
+
"BartForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"author": "Heewon Jeon([email protected])",
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classif_dropout": 0.1,
|
14 |
+
"classifier_dropout": 0.1,
|
15 |
+
"d_model": 768,
|
16 |
+
"decoder_attention_heads": 16,
|
17 |
+
"decoder_ffn_dim": 3072,
|
18 |
+
"decoder_layerdrop": 0.0,
|
19 |
+
"decoder_layers": 6,
|
20 |
+
"decoder_start_token_id": 1,
|
21 |
+
"do_blenderbot_90_layernorm": false,
|
22 |
+
"dropout": 0.1,
|
23 |
+
"encoder_attention_heads": 16,
|
24 |
+
"encoder_ffn_dim": 3072,
|
25 |
+
"encoder_layerdrop": 0.0,
|
26 |
+
"encoder_layers": 6,
|
27 |
+
"eos_token_id": 1,
|
28 |
+
"extra_pos_embeddings": 2,
|
29 |
+
"force_bos_token_to_be_generated": false,
|
30 |
+
"forced_eos_token_id": 1,
|
31 |
+
"gradient_checkpointing": false,
|
32 |
+
"id2label": {
|
33 |
+
"0": "NEGATIVE",
|
34 |
+
"1": "POSITIVE"
|
35 |
+
},
|
36 |
+
"init_std": 0.02,
|
37 |
+
"is_encoder_decoder": true,
|
38 |
+
"kobart_version": 2.0,
|
39 |
+
"label2id": {
|
40 |
+
"NEGATIVE": 0,
|
41 |
+
"POSITIVE": 1
|
42 |
+
},
|
43 |
+
"max_position_embeddings": 1026,
|
44 |
+
"model_type": "bart",
|
45 |
+
"normalize_before": false,
|
46 |
+
"normalize_embedding": true,
|
47 |
+
"num_hidden_layers": 6,
|
48 |
+
"pad_token_id": 3,
|
49 |
+
"scale_embedding": false,
|
50 |
+
"static_position_embeddings": false,
|
51 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
52 |
+
"torch_dtype": "float32",
|
53 |
+
"transformers_version": "4.30.1",
|
54 |
+
"use_cache": true,
|
55 |
+
"vocab_size": 30000
|
56 |
+
}
|
model/final2.h5/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"decoder_start_token_id": 1,
|
5 |
+
"eos_token_id": 1,
|
6 |
+
"forced_eos_token_id": 1,
|
7 |
+
"pad_token_id": 3,
|
8 |
+
"transformers_version": "4.30.1"
|
9 |
+
}
|
model/final2.h5/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf59473330d28a08bc91af6a2aadca7ffdfc67aabe5af8a0e337532744d491dd
|
3 |
+
size 495644701
|
model/onlineContrastive/1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
model/onlineContrastive/README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, mean pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 1822 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 5,
|
101 |
+
"evaluation_steps": 182,
|
102 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 2e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 911,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
model/onlineContrastive/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "klue/roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.29.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
model/onlineContrastive/config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.29.2",
|
5 |
+
"pytorch": "2.0.1+cu118"
|
6 |
+
}
|
7 |
+
}
|
model/onlineContrastive/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
model/onlineContrastive/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f33199a31e10b0c6bf79b4b624ad62a9759e9684df10242be30e675f1c6967e
|
3 |
+
size 442543661
|
model/onlineContrastive/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
model/onlineContrastive/special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
model/onlineContrastive/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/onlineContrastive/tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_basic_tokenize": true,
|
6 |
+
"do_lower_case": false,
|
7 |
+
"eos_token": "[SEP]",
|
8 |
+
"mask_token": "[MASK]",
|
9 |
+
"model_max_length": 512,
|
10 |
+
"never_split": null,
|
11 |
+
"pad_token": "[PAD]",
|
12 |
+
"sep_token": "[SEP]",
|
13 |
+
"strip_accents": null,
|
14 |
+
"tokenize_chinese_chars": true,
|
15 |
+
"tokenizer_class": "BertTokenizer",
|
16 |
+
"unk_token": "[UNK]"
|
17 |
+
}
|
model/onlineContrastive/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
konlpy
|
4 |
+
sentence_transformers
|
5 |
+
transformers
|
6 |
+
pytorch_lightning==1.4.9
|
7 |
+
torchmetrics==0.6.0
|
8 |
+
torchtext==0.6.0
|
9 |
+
transformers[sentencepiece]
|
10 |
+
torch
|
11 |
+
tensorflow
|