File size: 9,699 Bytes
c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 acc5a5f c923467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import pandas as pd
MODEL_NAME_COST = {
"anthropic/claude-2.1": 8,
"anthropic/claude-3-haiku": 0.25,
"anthropic/claude-3-opus": 15,
"anthropic/claude-3-sonnet": 3,
"cohere/command-r": 0.5,
"google/gemini-pro": 0.12,
"google/gemma-7b-it": 0.1,
"mistralai/mistral-large": 8,
"mistralai/mistral-medium": 2.7,
"mistralai/mixtral-8x7b-instruct": 0.7,
"openai/gpt-3.5-turbo": 0.5,
"openai/gpt-4-1106-preview": 10,
}
def make_default_md():
leaderboard_md = f"""
# ๐ CZ-EVAL Leaderboard
[Developer](https://me.hynky.name/) | [Twitter](https://twitter.com/HKydlicek)
CZ-EVAL is a evaluation leadboard of Tasks in Czech for LLMs.
It's evaluated on following datasets:
- Math Problems Understanding [Klokan-QA](https://huggingface.co./datasets/hynky/klokan-qa)
- Reasoning and General Knowledge [TSP-QA](https://huggingface.co./datasets/hynky/tsp-qa)
๐ป Code: The evaluation code can be found at [hynky1999/LLM-Eval](https://github.com/hynky1999/LLM-Eval). Model inference is done using [Open-Router](https://openrouter.ai/) or on cloud using [Modal Labs](https://modal.com/).
"""
return leaderboard_md
def make_arena_leaderboard_md(arena_df):
total_models = len(arena_df)
leaderboard_md = f"""
Total #models: **{total_models}**. Last updated: Mar 17, 2024.
"""
return leaderboard_md
def make_full_leaderboard_md(elo_results):
leaderboard_md = f"""
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
- [Klokan-QA](https://huggingface.co./datasets/hynky/klokan-qa) - Mathematical competitions dataset
- [TSP](https://huggingface.co./datasets/hynky/TSP) - Comprehensive dataset of
"""
return leaderboard_md
# Combine all category accuracies into a single DataFrame
def plot_spider(df, title):
categories = df.columns.tolist()[1:]
categories = [
*categories,
categories[0],
] # Ensure the graph is circular by appending the start to the end
colors = [
'#1f77b4', # muted blue
'#ff7f0e', # safety orange
'#2ca02c', # cooked asparagus green
'#d62728', # brick red
'#9467bd', # muted purple
'#8c564b', # chestnut brown
'#e377c2', # raspberry yogurt pink
'#7f7f7f', # middle gray
'#bcbd22', # curry yellow-green
'#17becf', # blue-teal
'#f7b6d2', # pastel pink
'#bcbd22', # faded green
'#dbdb8d', # light olive
'#17becf', # soft blue
'#9edae5', # light blue
'#c5b0d5', # soft purple
'#c49c94', # dusty rose
'#f7b6d2', # pastel pink
'#bcbd22', # faded green
'#dbdb8d', # light olive
'#17becf', # soft blue
'#9edae5', # light blue
'#c5b0d5', # soft purple
'#c49c94', # dusty rose
]
# Setting for 1000x1000
fig_1000 = go.Figure()
for i, (idx, row) in enumerate(df.iterrows()):
name = row[0]
row = row.tolist()[1:]
row = row + [
row[0]
] # Ensure the graph is circular by appending the start to the end
color = colors[i]
fig_1000.add_trace(
go.Scatterpolar(
r=row,
theta=categories,
opacity=0.4,
name=name,
line=dict(
color=color, width=4
), # Adjust line width for better visibility
)
)
fig_1000.update_layout(
width=600,
height=950,
polar=dict(
angularaxis=dict(
gridwidth=2, # Increase line width for better visibility
rotation=90,
direction="clockwise",
),
radialaxis=dict(
visible=True,
range=[0, 100],
angle=45,
tickangle=45,
tickvals=[0, 25, 50, 75, 100],
ticktext=["0%", "25%", "50%", "75%", "100%"],
),
),
title_text=title,
title_x=0.5,
title_y=0.97,
title_xanchor="center",
title_yanchor="top",
title_font_size=24,
title_font_color="#333333",
font=dict(family="Arial", size=16, color="#333333"),
legend=dict(
orientation="h", yanchor="bottom", y=-0.45, xanchor="center", x=0.5
),
)
return fig_1000
def openrouter_hyperlink(model_name):
return f'<a target="_blank" href="https://openrouter.ai/models/{model_name}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def get_full_table(model_table_df):
num_cols = ["klokan", "culture", "analytical", "critical", "verbal"]
# Multiply by 100 and round to 2 decimals
# Add average
model_table_df["average"] = model_table_df[num_cols].mean(axis=1)
model_table_df[num_cols + ["average"]] = model_table_df[
num_cols + ["average"]
].apply(lambda x: round(x * 100, 2))
# Sort and add rank
model_table_df.sort_values(by="average", ascending=False, inplace=True)
model_table_df.insert(0, "rank", np.arange(1, len(model_table_df) + 1))
# Add cost
model_table_df["completion_price"] = model_table_df["model_name"].apply(
lambda x: f"{MODEL_NAME_COST.get(x, "N/A")}$"
)
# Add link
model_table_df["model_name"] = model_table_df["model_name"].apply(
lambda x: openrouter_hyperlink(x)
)
# Ensure the dataframe is in the correct order before renaming
model_table_df = model_table_df[["rank", "model_name", "completion_price", "klokan", "culture", "analytical", "critical", "verbal", "average"]]
model_table_df.rename(
columns={
"model_name": "๐ค Model",
"completion_price": "๐ฐ Cost (1M-Tokens)",
"klokan": "๐งฎ Klokan-QA",
"culture": "๐ TSP-Culture",
"analytical": "๐ TSP-Analytical",
"critical": "๐ก TSP-Critical",
"verbal": "๐ TSP-Verbal",
"average": "๐ Average",
},
inplace=True,
)
return model_table_df
def build_leaderboard_tab(leaderboard_table_file, klokan_table_file, tsp_table_file):
results = pd.read_csv(leaderboard_table_file)
results = get_full_table(results)
# p1, p2 = get_grafs(pd.read_json(klokan_table_file), pd.read_json(tsp_table_file))
default_md = make_default_md()
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
with gr.Tabs() as tabs:
# arena table
with gr.Tab("CZ-EVAL Leaderboard", id=0):
md = make_arena_leaderboard_md(results)
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
datatype=[
"str",
"markdown",
"number",
"number",
"number",
"number",
"number",
"number",
"str",
"str",
"str",
],
value=results,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[
70,
200,
110,
120,
120,
120,
120,
100,
100,
],
wrap=True,
)
p1 = plot_spider(pd.read_csv(klokan_table_file), "Klokan-QA - Acurracy")
p2 = plot_spider(pd.read_csv(tsp_table_file), "TSP - Accuracy")
gr.Markdown(
f"""## More Statistics for CZ-EVAL\n
Below are figures for more statistics.
""",
elem_id="leaderboard_markdown",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 1: Performance of models on Klokan-QA per difficulty"
)
plot_1 = gr.Plot(p1, show_label=False)
with gr.Column():
gr.Markdown("#### Figure 2: Performance of models on TSP dataset")
plot_2 = gr.Plot(p2, show_label=False)
return [md_1, plot_1, plot_2]
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
def build_demo(leadboard_table, klokan_table, tsp_table):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="CZ-EVAL Leaderboard",
theme=gr.themes.Base(text_size=text_size),
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
leadboard_table, klokan_table, tsp_table
)
return demo
demo = build_demo(
leadboard_table="./leaderboard/table.csv",
klokan_table="./leaderboard/klokan.csv",
tsp_table="./leaderboard/tsp.csv",
)
if __name__ == "__main__":
demo.launch()
|