File size: 24,839 Bytes
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import csv
import glob
import json
import numpy as np
import os.path as osp
import pickle
import random

import decord
import pandas as pd
import torch


def datetime2sec(str):
    hh, mm, ss = str.split(':')
    return int(hh) * 3600 + int(mm) * 60 + float(ss)


def video_loader(root, vid, second, end_second=None, chunk_len=300, fps=30, clip_length=32, jitter=False):
    if chunk_len == -1:
        vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid)))
        second_offset = second
        if end_second is not None:
            end_second = min(end_second, len(vr) / vr.get_avg_fps())
        else:
            end_second = len(vr) / vr.get_avg_fps()
    else:
        chunk_start = int(second) // chunk_len * chunk_len
        second_offset = second - chunk_start
        vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start)))
    if fps == -1:
        fps = vr.get_avg_fps()

    # calculate frame_ids
    frame_offset = int(np.round(second_offset * fps))
    total_duration = max(int((end_second - second) * fps), clip_length)
    if chunk_len == -1:
        if end_second <= second:
            raise ValueError("end_second should be greater than second")
        else:
            frame_ids = get_frame_ids(frame_offset, min(frame_offset + total_duration, len(vr)), num_segments=clip_length, jitter=jitter)
    else:
        frame_ids = get_frame_ids(frame_offset, frame_offset + total_duration, num_segments=clip_length, jitter=jitter)

    # load frames
    if max(frame_ids) < len(vr):
        try:
            frames = vr.get_batch(frame_ids).asnumpy()
        except decord.DECORDError as error:
            print(error)
            frames = vr.get_batch([0] * len(frame_ids)).asnumpy()
    else:
        # find the remaining frames in the next chunk
        try:
            frame_ids_part1 = list(filter(lambda frame_id: frame_id < len(vr), frame_ids))
            frames_part1 = vr.get_batch(frame_ids_part1).asnumpy()
            vr2 = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start + chunk_len)))
            frame_ids_part2 = list(filter(lambda frame_id: frame_id >= len(vr), frame_ids))
            frame_ids_part2 = [min(frame_id % len(vr), len(vr2) - 1) for frame_id in frame_ids_part2]
            frames_part2 = vr2.get_batch(frame_ids_part2).asnumpy()
            frames = np.concatenate([frames_part1, frames_part2], axis=0)
        # the next chunk does not exist; the current chunk is the last one
        except (RuntimeError, decord.DECORDError) as error:
            print(error)
            frame_ids = get_frame_ids(min(frame_offset, len(vr) - 1), len(vr), num_segments=clip_length, jitter=jitter)
            frames = vr.get_batch(frame_ids).asnumpy()

    frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
    return torch.stack(frames, dim=0)


def get_frame_ids(start_frame, end_frame, num_segments=32, jitter=True):
    seg_size = float(end_frame - start_frame - 1) / num_segments
    seq = []
    for i in range(num_segments):
        start = int(np.round(seg_size * i) + start_frame)
        end = int(np.round(seg_size * (i + 1)) + start_frame)
        end = min(end, end_frame)
        if jitter:
            frame_id = np.random.randint(low=start, high=(end + 1))
        else:
            frame_id = (start + end) // 2
        seq.append(frame_id)
    return seq


def video_loader_by_frames(root, vid, frame_ids):
    vr = decord.VideoReader(osp.join(root, vid))
    try:
        frames = vr.get_batch(frame_ids).asnumpy()
        frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
    except (IndexError, decord.DECORDError) as error:
        print(error)
        print("Erroneous video: ", vid)
        frames = [torch.zeros((240, 320, 3)) for _ in range(len(frame_ids))]
    return torch.stack(frames, dim=0)


class VideoCaptionDatasetBase(torch.utils.data.Dataset):
    def __init__(self, dataset, root, metadata, is_trimmed=True):
        self.dataset = dataset
        self.root = root
        self.is_trimmed = is_trimmed

        if self.dataset == 'ego4d':
            with open(metadata, 'rb') as f:
                self.samples = pickle.load(f)
        elif self.dataset == 'ego4d_mcq':
            with open(metadata, 'r') as f:
                self.samples = json.load(f)
        elif self.dataset in ['ek100_cls', 'ek100_mir']:
            video_list = glob.glob(osp.join(self.root, '*/*.MP4'))
            fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
            self.samples = []
            with open(metadata) as f:
                csv_reader = csv.reader(f)
                _ = next(csv_reader)  # skip the header
                for row in csv_reader:
                    pid, vid = row[1:3]
                    # start_frame, end_frame = int(row[6]), int(row[7])
                    # Deprecated: some videos might have fps mismatch issue
                    start_timestamp, end_timestamp = datetime2sec(row[4]), datetime2sec(row[5])
                    narration = row[8]
                    verb, noun = int(row[10]), int(row[12])
                    vid_path = '{}/{}.MP4'.format(pid, vid)
                    fps = fps_dict[osp.join(self.root, vid_path)]
                    start_frame = int(np.round(fps * start_timestamp))
                    end_frame = int(np.ceil(fps * end_timestamp))
                    self.samples.append((vid_path, start_frame, end_frame, narration, verb, noun))
            if self.dataset == 'ek100_mir':
                self.metadata_sentence = pd.read_csv(metadata[:metadata.index('.csv')] + '_sentence.csv')
                if 'train' in metadata:
                    self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_train.pkl'), 'rb'))
                elif 'test' in metadata:
                    self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_test.pkl'), 'rb'))
                else:
                    raise ValueError('{} should contain either "train" or "test"!'.format(metadata))
                self.relevancy = .1
        elif self.dataset == 'egtea':
            video_list = glob.glob(osp.join(self.root, '*/*'))
            len_dict = {video: len(decord.VideoReader(video)) for video in video_list}

            vn_list, labels = [], []
            for row in open(osp.join(osp.dirname(metadata), 'action_idx.txt')):
                row = row.strip()
                vn = int(row.split(' ')[-1])
                vn_list.append(vn)
                narration = ' '.join(row.split(' ')[:-1])
                labels.append(narration.replace('_', ' ').lower())
                # labels.append(narration)
            mapping_act2narration = {vn: narration for vn, narration in zip(vn_list, labels)}

            self.samples = []
            with open(metadata) as f:
                for row in f:
                    clip_id, action_idx = row.strip().split(' ')[:2]
                    video_id = '-'.join(clip_id.split('-')[:3])
                    vid_relpath = osp.join(video_id, '{}.mp4'.format(clip_id))
                    vid_fullpath = osp.join(self.root, video_id, '{}.mp4'.format(clip_id))
                    self.samples.append((vid_relpath, 0, len_dict[vid_fullpath], mapping_act2narration[int(action_idx)]))
        elif self.dataset == 'charades_ego':
            video_list = glob.glob(osp.join(self.root, '*.mp4'))
            fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
            self.samples = []
            with open(metadata) as f:
                csv_reader = csv.reader(f)
                _ = next(csv_reader)  # skip the header
                for row in csv_reader:
                    video_id = row[0]
                    if self.is_trimmed:
                        for action_tuple in row[9].split(';'):
                            if not action_tuple:
                                continue
                            action, start_timestamp, end_timestamp = action_tuple.split(' ')
                            start_timestamp, end_timestamp = float(start_timestamp), float(end_timestamp)
                            vid_path = '{}.mp4'.format(video_id)
                            fps = fps_dict[osp.join(self.root, vid_path)]
                            start_frame = int(np.round(fps * start_timestamp))
                            end_frame = int(np.ceil(fps * end_timestamp))
                            self.samples.append((vid_path, start_frame, end_frame, action))
                    else:
                        if not row[9]:
                            action_list = []
                        else:
                            action_list = [action_tuple.split(' ')[0] for action_tuple in row[9].split(';')]
                        vid_path = '{}.mp4'.format(video_id)
                        fps = fps_dict[osp.join(self.root, vid_path)]
                        duration = fps * float(row[10])
                        self.samples.append((vid_path, 0, duration, action_list))
        elif self.dataset == 'charades_ego_trimmed':
            with open(metadata, 'rb') as f:
                self.samples = pickle.load(f)
        else:
            raise NotImplementedError

    def get_raw_item(self, i, is_training=True, num_clips=1, clip_length=32, clip_stride=2, sparse_sample=False,
                     narration_selection='random'):
        if self.dataset == 'ego4d':
            if len(self.samples[i]) == 4:
                vid, start_second, end_second, narration = self.samples[i]
                frames = video_loader(self.root, vid, start_second,
                                      end_second=end_second,
                                      clip_length=clip_length,
                                      jitter=is_training)
                if isinstance(narration, list):
                    if narration_selection == 'random':
                        narration = random.choice(narration)
                    elif narration_selection == 'concat':
                        narration = '. '.join(narration)
                    elif narration_selection == 'list':
                        narration = narration
                    else:
                        raise ValueError
                return frames, narration
            elif len(self.samples[i]) == 5:
                # TODO: need better filtering strategy based on nll
                vid, start_second, end_second, narration, _ = self.samples[i]
                frames = video_loader(self.root, vid, start_second,
                                      end_second=end_second,
                                      clip_length=clip_length,
                                      jitter=is_training)
                if isinstance(narration, list):
                    if narration_selection == 'random':
                        narration = random.choice(narration)
                    elif narration_selection == 'concat':
                        narration = '. '.join(narration)
                    elif narration_selection == 'list':
                        narration = narration
                    else:
                        raise ValueError
                return frames, narration
        elif self.dataset == 'ego4d_mcq':
            itemMCQ = self.samples[str(i)]
            answerIndex = itemMCQ['answer']
            textQuery = itemMCQ['query']['clip_text']
            sampleOptions = itemMCQ['choices']
            frames_options = []
            narration_options = []
            for option_id in range(len(sampleOptions)):
                option = sampleOptions[str(option_id)]
                frames = video_loader(self.root, option['video_uid'],
                                      float(option['clip_start']), end_second=float(option['clip_end']),
                                      clip_length=clip_length,
                                      jitter=is_training)
                frames_options.append(frames)
                narration_options.append(option['clip_text'])
            return textQuery, frames_options, narration_options, answerIndex, itemMCQ['types']
        elif self.dataset == 'ek100_mir':
            vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
            # from third_party.EgoVLP.base.base_dataset import sample_frames_start_end
            # frame_ids = sample_frames_start_end(clip_length, start_frame, end_frame, sample='uniform', fix_start=None)
            frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
            frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            if is_training:
                positive_list = np.where(self.relevancy_mat[i] > self.relevancy)[0].tolist()
                if positive_list != []:
                    pos = random.sample(positive_list, min(len(positive_list), 1))[0]
                    if pos < len(self.metadata_sentence) and pos < self.relevancy_mat.shape[1]:
                        return frames, (self.metadata_sentence.iloc[pos][1], self.relevancy_mat[i][pos])
            else:
                return frames, (narration, 1)
        elif self.dataset == 'ek100_cls':
            vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
            frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
            frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            return frames, '{}:{}'.format(verb, noun)
        elif self.dataset == 'egtea':
            vid_path, start_frame, end_frame, sentence = self.samples[i]
            if is_training:
                assert num_clips == 1
                if end_frame < clip_length * clip_stride:
                    frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
                    zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
                    frames = torch.cat((frames, zeros), dim=0)
                    frames = frames[::clip_stride]
                else:
                    start_id = np.random.randint(0, end_frame - clip_length * clip_stride + 1)
                    frame_ids = np.arange(start_id, start_id + clip_length * clip_stride, clip_stride)
                    frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            else:
                if end_frame < clip_length * clip_stride:
                    frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
                    zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
                    frames = torch.cat((frames, zeros), dim=0)
                    frames = frames[::clip_stride]
                    frames = frames.repeat(num_clips, 1, 1, 1)
                else:
                    frame_ids = []
                    for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
                        frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
                    frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            return frames, sentence
        elif self.dataset == 'charades_ego':
            vid_path, start_frame, end_frame, action_list = self.samples[i]
            if sparse_sample:
                frame_ids = get_frame_ids(start_frame, end_frame, num_segments=num_clips * clip_length, jitter=is_training)
                frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            else:
                if end_frame < clip_length * clip_stride:
                    frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
                    zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
                    frames = torch.cat((frames, zeros), dim=0)
                    frames = frames[::clip_stride]
                    frames = frames.repeat(num_clips, 1, 1, 1)
                else:
                    frame_ids = []
                    for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
                        frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
                    #print('frame_ids:', frame_ids)
                    frames = video_loader_by_frames(self.root, vid_path, frame_ids)
            return frames, action_list, vid_path
        elif self.dataset == 'charades_ego_trimmed':
            vid, start_second, end_second, narration = self.samples[i]
            frames = video_loader(self.root, vid, start_second,
                                  end_second=end_second,
                                  chunk_len=-1,  # no chunk for CharadesEgo
                                  fps=-1,  # could be variable fps
                                  clip_length=clip_length,
                                  jitter=is_training)
            return frames, narration
        else:
            raise NotImplementedError

    def __getitem__(self, i):
        raise NotImplementedError

    def __len__(self):
        return len(self.samples)


class VideoCaptionDatasetCLIP(VideoCaptionDatasetBase):
    def __init__(self, dataset, root, metadata, transform=None,
                 is_training=True, tokenizer=None,
                 clip_length=32, clip_stride=2, sparse_sample=False,
                 narration_selection='random',
                 num_hard_negatives=0,
                 subsample_stride=None):
        super().__init__(dataset, root, metadata)

        self.full_samples = self.samples.copy()
        if isinstance(subsample_stride, int):
            self.samples = self.samples[::subsample_stride]
        self.transform = transform
        self.is_training = is_training
        self.tokenizer = tokenizer
        self.clip_length = clip_length
        self.clip_stride = clip_stride
        self.sparse_sample = sparse_sample
        self.narration_selection = narration_selection
        self.num_hard_negatives = num_hard_negatives
        if num_hard_negatives > 0:
            assert self.dataset == 'htm_aa'

    def __getitem__(self, i):
        frames, caption = self.get_raw_item(
            i, is_training=self.is_training,
            clip_length=self.clip_length,
            clip_stride=self.clip_stride,
            sparse_sample=self.sparse_sample,
            narration_selection=self.narration_selection,
        )

        # ek100_mir will also output relevancy value
        if isinstance(caption, tuple):
            caption, relevancy = caption
        else:
            relevancy = 0.

        # apply transformation
        if self.transform is not None:
            frames = self.transform(frames)

        # tokenize caption
        if self.tokenizer is not None:
            caption = self.tokenizer(caption)

        if isinstance(caption, tuple):
            caption, mask = caption
            return frames, caption, mask, relevancy
        else:
            return frames, caption, relevancy


class VideoCaptionDatasetMCQ(VideoCaptionDatasetBase):
    def __init__(self, dataset, root, metadata, transform=None,
                 is_training=True, tokenizer=None,
                 clip_length=32, clip_stride=2, sparse_sample=False,
                 narration_selection='random'):
        super().__init__(dataset, root, metadata)

        self.full_samples = self.samples.copy()
        self.transform = transform
        self.is_training = is_training
        self.tokenizer = tokenizer
        self.clip_length = clip_length
        self.clip_stride = clip_stride
        self.sparse_sample = sparse_sample
        self.narration_selection = narration_selection

    def __getitem__(self, i):

        textQuery, frames_options, narration_options, answerIndex, q_type = self.get_raw_item(
            i, is_training=self.is_training,
            clip_length=self.clip_length,
            clip_stride=self.clip_stride,
            sparse_sample=self.sparse_sample,
            narration_selection=self.narration_selection,
        )

        # apply transformation
        if self.transform is not None:
            frames_options = [self.transform(frames) for frames in frames_options]

        # tokenize caption
        if self.tokenizer is not None:
            textQuery = self.tokenizer(textQuery)
            narration_options = self.tokenizer(narration_options)
            if isinstance(textQuery, tuple):
                textQuery, mask_query = textQuery
                narration_options, mask_options = narration_options
                return (
                    textQuery, torch.stack(frames_options, dim=0),
                    narration_options, answerIndex, q_type,
                    mask_query, mask_options
                )
            else:
                return textQuery, torch.stack(frames_options, dim=0), narration_options, answerIndex, q_type


class VideoClassyDataset(VideoCaptionDatasetBase):
    def __init__(
        self, dataset, root, metadata, transform=None,
        is_training=True, label_mapping=None,
        num_clips=1,
        clip_length=32, clip_stride=2,
        sparse_sample=False,
        is_trimmed=True,
    ):
        super().__init__(dataset, root, metadata, is_trimmed=is_trimmed)

        self.transform = transform
        self.is_training = is_training
        self.label_mapping = label_mapping
        self.num_clips = num_clips
        self.clip_length = clip_length
        self.clip_stride = clip_stride
        self.sparse_sample = sparse_sample

    def __getitem__(self, i):
        frames, label, vid_path = self.get_raw_item(
            i, is_training=self.is_training,
            num_clips=self.num_clips,
            clip_length=self.clip_length,
            clip_stride=self.clip_stride,
            sparse_sample=self.sparse_sample,
        )

        # apply transformation
        if self.transform is not None:
            frames = self.transform(frames)

        if self.label_mapping is not None:
            if isinstance(label, list):
                # multi-label case
                res_array = np.zeros(len(self.label_mapping))
                for lbl in label:
                    res_array[self.label_mapping[lbl]] = 1.
                label = res_array
            else:
                label = self.label_mapping[label]

        return frames, label, vid_path


def get_dataset(train_transform, tokenizer, cfg, is_training=True):
    narration_selection = cfg.get('narration_selection', 'random')
    num_hard_neg = cfg.get('num_hard_neg', 0)
    data_cfg = cfg['data']
    if cfg['model']['arch'].startswith('CLIP') or cfg['model']['arch'].startswith('VCLM'):
        if is_training:
            metadata = data_cfg['metadata']
        else:
            metadata = data_cfg['metadata_val']

        return VideoCaptionDatasetCLIP(
            data_cfg['dataset'], data_cfg['root'], metadata, train_transform,
            is_training=is_training,
            tokenizer=tokenizer,
            clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
            sparse_sample=data_cfg['sparse_sample'],
            narration_selection=narration_selection,
            num_hard_negatives=num_hard_neg
        )
    else:
        raise NotImplementedError


def get_downstream_dataset(transform, tokenizer, cfg, is_training=True, num_clips=0, label_mapping=None):
    data_cfg = cfg['data']
    n_clips = num_clips if num_clips > 0 else data_cfg['num_clips']
    if is_training:
        metadata = data_cfg['metadata']
        return VideoClassyDataset(
            data_cfg['dataset'], data_cfg['root'], metadata, transform,
            is_training=True, label_mapping=label_mapping,
            num_clips=n_clips,
            clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
            sparse_sample=data_cfg['sparse_sample'],
        )
    else:
        metadata = data_cfg['metadata_val']
        return VideoClassyDataset(
            data_cfg['dataset'], data_cfg['root'], metadata, transform,
            is_training=False, label_mapping=label_mapping,
            num_clips=n_clips,
            clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
            sparse_sample=data_cfg['sparse_sample'],
            is_trimmed=not data_cfg['dataset'] == 'charades_ego'
        )