File size: 24,839 Bytes
c18a21e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import csv
import glob
import json
import numpy as np
import os.path as osp
import pickle
import random
import decord
import pandas as pd
import torch
def datetime2sec(str):
hh, mm, ss = str.split(':')
return int(hh) * 3600 + int(mm) * 60 + float(ss)
def video_loader(root, vid, second, end_second=None, chunk_len=300, fps=30, clip_length=32, jitter=False):
if chunk_len == -1:
vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid)))
second_offset = second
if end_second is not None:
end_second = min(end_second, len(vr) / vr.get_avg_fps())
else:
end_second = len(vr) / vr.get_avg_fps()
else:
chunk_start = int(second) // chunk_len * chunk_len
second_offset = second - chunk_start
vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start)))
if fps == -1:
fps = vr.get_avg_fps()
# calculate frame_ids
frame_offset = int(np.round(second_offset * fps))
total_duration = max(int((end_second - second) * fps), clip_length)
if chunk_len == -1:
if end_second <= second:
raise ValueError("end_second should be greater than second")
else:
frame_ids = get_frame_ids(frame_offset, min(frame_offset + total_duration, len(vr)), num_segments=clip_length, jitter=jitter)
else:
frame_ids = get_frame_ids(frame_offset, frame_offset + total_duration, num_segments=clip_length, jitter=jitter)
# load frames
if max(frame_ids) < len(vr):
try:
frames = vr.get_batch(frame_ids).asnumpy()
except decord.DECORDError as error:
print(error)
frames = vr.get_batch([0] * len(frame_ids)).asnumpy()
else:
# find the remaining frames in the next chunk
try:
frame_ids_part1 = list(filter(lambda frame_id: frame_id < len(vr), frame_ids))
frames_part1 = vr.get_batch(frame_ids_part1).asnumpy()
vr2 = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start + chunk_len)))
frame_ids_part2 = list(filter(lambda frame_id: frame_id >= len(vr), frame_ids))
frame_ids_part2 = [min(frame_id % len(vr), len(vr2) - 1) for frame_id in frame_ids_part2]
frames_part2 = vr2.get_batch(frame_ids_part2).asnumpy()
frames = np.concatenate([frames_part1, frames_part2], axis=0)
# the next chunk does not exist; the current chunk is the last one
except (RuntimeError, decord.DECORDError) as error:
print(error)
frame_ids = get_frame_ids(min(frame_offset, len(vr) - 1), len(vr), num_segments=clip_length, jitter=jitter)
frames = vr.get_batch(frame_ids).asnumpy()
frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
return torch.stack(frames, dim=0)
def get_frame_ids(start_frame, end_frame, num_segments=32, jitter=True):
seg_size = float(end_frame - start_frame - 1) / num_segments
seq = []
for i in range(num_segments):
start = int(np.round(seg_size * i) + start_frame)
end = int(np.round(seg_size * (i + 1)) + start_frame)
end = min(end, end_frame)
if jitter:
frame_id = np.random.randint(low=start, high=(end + 1))
else:
frame_id = (start + end) // 2
seq.append(frame_id)
return seq
def video_loader_by_frames(root, vid, frame_ids):
vr = decord.VideoReader(osp.join(root, vid))
try:
frames = vr.get_batch(frame_ids).asnumpy()
frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
except (IndexError, decord.DECORDError) as error:
print(error)
print("Erroneous video: ", vid)
frames = [torch.zeros((240, 320, 3)) for _ in range(len(frame_ids))]
return torch.stack(frames, dim=0)
class VideoCaptionDatasetBase(torch.utils.data.Dataset):
def __init__(self, dataset, root, metadata, is_trimmed=True):
self.dataset = dataset
self.root = root
self.is_trimmed = is_trimmed
if self.dataset == 'ego4d':
with open(metadata, 'rb') as f:
self.samples = pickle.load(f)
elif self.dataset == 'ego4d_mcq':
with open(metadata, 'r') as f:
self.samples = json.load(f)
elif self.dataset in ['ek100_cls', 'ek100_mir']:
video_list = glob.glob(osp.join(self.root, '*/*.MP4'))
fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
self.samples = []
with open(metadata) as f:
csv_reader = csv.reader(f)
_ = next(csv_reader) # skip the header
for row in csv_reader:
pid, vid = row[1:3]
# start_frame, end_frame = int(row[6]), int(row[7])
# Deprecated: some videos might have fps mismatch issue
start_timestamp, end_timestamp = datetime2sec(row[4]), datetime2sec(row[5])
narration = row[8]
verb, noun = int(row[10]), int(row[12])
vid_path = '{}/{}.MP4'.format(pid, vid)
fps = fps_dict[osp.join(self.root, vid_path)]
start_frame = int(np.round(fps * start_timestamp))
end_frame = int(np.ceil(fps * end_timestamp))
self.samples.append((vid_path, start_frame, end_frame, narration, verb, noun))
if self.dataset == 'ek100_mir':
self.metadata_sentence = pd.read_csv(metadata[:metadata.index('.csv')] + '_sentence.csv')
if 'train' in metadata:
self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_train.pkl'), 'rb'))
elif 'test' in metadata:
self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_test.pkl'), 'rb'))
else:
raise ValueError('{} should contain either "train" or "test"!'.format(metadata))
self.relevancy = .1
elif self.dataset == 'egtea':
video_list = glob.glob(osp.join(self.root, '*/*'))
len_dict = {video: len(decord.VideoReader(video)) for video in video_list}
vn_list, labels = [], []
for row in open(osp.join(osp.dirname(metadata), 'action_idx.txt')):
row = row.strip()
vn = int(row.split(' ')[-1])
vn_list.append(vn)
narration = ' '.join(row.split(' ')[:-1])
labels.append(narration.replace('_', ' ').lower())
# labels.append(narration)
mapping_act2narration = {vn: narration for vn, narration in zip(vn_list, labels)}
self.samples = []
with open(metadata) as f:
for row in f:
clip_id, action_idx = row.strip().split(' ')[:2]
video_id = '-'.join(clip_id.split('-')[:3])
vid_relpath = osp.join(video_id, '{}.mp4'.format(clip_id))
vid_fullpath = osp.join(self.root, video_id, '{}.mp4'.format(clip_id))
self.samples.append((vid_relpath, 0, len_dict[vid_fullpath], mapping_act2narration[int(action_idx)]))
elif self.dataset == 'charades_ego':
video_list = glob.glob(osp.join(self.root, '*.mp4'))
fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
self.samples = []
with open(metadata) as f:
csv_reader = csv.reader(f)
_ = next(csv_reader) # skip the header
for row in csv_reader:
video_id = row[0]
if self.is_trimmed:
for action_tuple in row[9].split(';'):
if not action_tuple:
continue
action, start_timestamp, end_timestamp = action_tuple.split(' ')
start_timestamp, end_timestamp = float(start_timestamp), float(end_timestamp)
vid_path = '{}.mp4'.format(video_id)
fps = fps_dict[osp.join(self.root, vid_path)]
start_frame = int(np.round(fps * start_timestamp))
end_frame = int(np.ceil(fps * end_timestamp))
self.samples.append((vid_path, start_frame, end_frame, action))
else:
if not row[9]:
action_list = []
else:
action_list = [action_tuple.split(' ')[0] for action_tuple in row[9].split(';')]
vid_path = '{}.mp4'.format(video_id)
fps = fps_dict[osp.join(self.root, vid_path)]
duration = fps * float(row[10])
self.samples.append((vid_path, 0, duration, action_list))
elif self.dataset == 'charades_ego_trimmed':
with open(metadata, 'rb') as f:
self.samples = pickle.load(f)
else:
raise NotImplementedError
def get_raw_item(self, i, is_training=True, num_clips=1, clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random'):
if self.dataset == 'ego4d':
if len(self.samples[i]) == 4:
vid, start_second, end_second, narration = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
clip_length=clip_length,
jitter=is_training)
if isinstance(narration, list):
if narration_selection == 'random':
narration = random.choice(narration)
elif narration_selection == 'concat':
narration = '. '.join(narration)
elif narration_selection == 'list':
narration = narration
else:
raise ValueError
return frames, narration
elif len(self.samples[i]) == 5:
# TODO: need better filtering strategy based on nll
vid, start_second, end_second, narration, _ = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
clip_length=clip_length,
jitter=is_training)
if isinstance(narration, list):
if narration_selection == 'random':
narration = random.choice(narration)
elif narration_selection == 'concat':
narration = '. '.join(narration)
elif narration_selection == 'list':
narration = narration
else:
raise ValueError
return frames, narration
elif self.dataset == 'ego4d_mcq':
itemMCQ = self.samples[str(i)]
answerIndex = itemMCQ['answer']
textQuery = itemMCQ['query']['clip_text']
sampleOptions = itemMCQ['choices']
frames_options = []
narration_options = []
for option_id in range(len(sampleOptions)):
option = sampleOptions[str(option_id)]
frames = video_loader(self.root, option['video_uid'],
float(option['clip_start']), end_second=float(option['clip_end']),
clip_length=clip_length,
jitter=is_training)
frames_options.append(frames)
narration_options.append(option['clip_text'])
return textQuery, frames_options, narration_options, answerIndex, itemMCQ['types']
elif self.dataset == 'ek100_mir':
vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
# from third_party.EgoVLP.base.base_dataset import sample_frames_start_end
# frame_ids = sample_frames_start_end(clip_length, start_frame, end_frame, sample='uniform', fix_start=None)
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
if is_training:
positive_list = np.where(self.relevancy_mat[i] > self.relevancy)[0].tolist()
if positive_list != []:
pos = random.sample(positive_list, min(len(positive_list), 1))[0]
if pos < len(self.metadata_sentence) and pos < self.relevancy_mat.shape[1]:
return frames, (self.metadata_sentence.iloc[pos][1], self.relevancy_mat[i][pos])
else:
return frames, (narration, 1)
elif self.dataset == 'ek100_cls':
vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, '{}:{}'.format(verb, noun)
elif self.dataset == 'egtea':
vid_path, start_frame, end_frame, sentence = self.samples[i]
if is_training:
assert num_clips == 1
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
else:
start_id = np.random.randint(0, end_frame - clip_length * clip_stride + 1)
frame_ids = np.arange(start_id, start_id + clip_length * clip_stride, clip_stride)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
else:
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
frames = frames.repeat(num_clips, 1, 1, 1)
else:
frame_ids = []
for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, sentence
elif self.dataset == 'charades_ego':
vid_path, start_frame, end_frame, action_list = self.samples[i]
if sparse_sample:
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=num_clips * clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
else:
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
frames = frames.repeat(num_clips, 1, 1, 1)
else:
frame_ids = []
for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
#print('frame_ids:', frame_ids)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, action_list, vid_path
elif self.dataset == 'charades_ego_trimmed':
vid, start_second, end_second, narration = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
chunk_len=-1, # no chunk for CharadesEgo
fps=-1, # could be variable fps
clip_length=clip_length,
jitter=is_training)
return frames, narration
else:
raise NotImplementedError
def __getitem__(self, i):
raise NotImplementedError
def __len__(self):
return len(self.samples)
class VideoCaptionDatasetCLIP(VideoCaptionDatasetBase):
def __init__(self, dataset, root, metadata, transform=None,
is_training=True, tokenizer=None,
clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random',
num_hard_negatives=0,
subsample_stride=None):
super().__init__(dataset, root, metadata)
self.full_samples = self.samples.copy()
if isinstance(subsample_stride, int):
self.samples = self.samples[::subsample_stride]
self.transform = transform
self.is_training = is_training
self.tokenizer = tokenizer
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
self.narration_selection = narration_selection
self.num_hard_negatives = num_hard_negatives
if num_hard_negatives > 0:
assert self.dataset == 'htm_aa'
def __getitem__(self, i):
frames, caption = self.get_raw_item(
i, is_training=self.is_training,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
narration_selection=self.narration_selection,
)
# ek100_mir will also output relevancy value
if isinstance(caption, tuple):
caption, relevancy = caption
else:
relevancy = 0.
# apply transformation
if self.transform is not None:
frames = self.transform(frames)
# tokenize caption
if self.tokenizer is not None:
caption = self.tokenizer(caption)
if isinstance(caption, tuple):
caption, mask = caption
return frames, caption, mask, relevancy
else:
return frames, caption, relevancy
class VideoCaptionDatasetMCQ(VideoCaptionDatasetBase):
def __init__(self, dataset, root, metadata, transform=None,
is_training=True, tokenizer=None,
clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random'):
super().__init__(dataset, root, metadata)
self.full_samples = self.samples.copy()
self.transform = transform
self.is_training = is_training
self.tokenizer = tokenizer
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
self.narration_selection = narration_selection
def __getitem__(self, i):
textQuery, frames_options, narration_options, answerIndex, q_type = self.get_raw_item(
i, is_training=self.is_training,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
narration_selection=self.narration_selection,
)
# apply transformation
if self.transform is not None:
frames_options = [self.transform(frames) for frames in frames_options]
# tokenize caption
if self.tokenizer is not None:
textQuery = self.tokenizer(textQuery)
narration_options = self.tokenizer(narration_options)
if isinstance(textQuery, tuple):
textQuery, mask_query = textQuery
narration_options, mask_options = narration_options
return (
textQuery, torch.stack(frames_options, dim=0),
narration_options, answerIndex, q_type,
mask_query, mask_options
)
else:
return textQuery, torch.stack(frames_options, dim=0), narration_options, answerIndex, q_type
class VideoClassyDataset(VideoCaptionDatasetBase):
def __init__(
self, dataset, root, metadata, transform=None,
is_training=True, label_mapping=None,
num_clips=1,
clip_length=32, clip_stride=2,
sparse_sample=False,
is_trimmed=True,
):
super().__init__(dataset, root, metadata, is_trimmed=is_trimmed)
self.transform = transform
self.is_training = is_training
self.label_mapping = label_mapping
self.num_clips = num_clips
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
def __getitem__(self, i):
frames, label, vid_path = self.get_raw_item(
i, is_training=self.is_training,
num_clips=self.num_clips,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
)
# apply transformation
if self.transform is not None:
frames = self.transform(frames)
if self.label_mapping is not None:
if isinstance(label, list):
# multi-label case
res_array = np.zeros(len(self.label_mapping))
for lbl in label:
res_array[self.label_mapping[lbl]] = 1.
label = res_array
else:
label = self.label_mapping[label]
return frames, label, vid_path
def get_dataset(train_transform, tokenizer, cfg, is_training=True):
narration_selection = cfg.get('narration_selection', 'random')
num_hard_neg = cfg.get('num_hard_neg', 0)
data_cfg = cfg['data']
if cfg['model']['arch'].startswith('CLIP') or cfg['model']['arch'].startswith('VCLM'):
if is_training:
metadata = data_cfg['metadata']
else:
metadata = data_cfg['metadata_val']
return VideoCaptionDatasetCLIP(
data_cfg['dataset'], data_cfg['root'], metadata, train_transform,
is_training=is_training,
tokenizer=tokenizer,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
narration_selection=narration_selection,
num_hard_negatives=num_hard_neg
)
else:
raise NotImplementedError
def get_downstream_dataset(transform, tokenizer, cfg, is_training=True, num_clips=0, label_mapping=None):
data_cfg = cfg['data']
n_clips = num_clips if num_clips > 0 else data_cfg['num_clips']
if is_training:
metadata = data_cfg['metadata']
return VideoClassyDataset(
data_cfg['dataset'], data_cfg['root'], metadata, transform,
is_training=True, label_mapping=label_mapping,
num_clips=n_clips,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
)
else:
metadata = data_cfg['metadata_val']
return VideoClassyDataset(
data_cfg['dataset'], data_cfg['root'], metadata, transform,
is_training=False, label_mapping=label_mapping,
num_clips=n_clips,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
is_trimmed=not data_cfg['dataset'] == 'charades_ego'
)
|