Spaces:
Runtime error
Runtime error
update_app
Browse files- README.md +0 -16
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +14 -43
- modules/dataset.py +0 -16
- modules/inference.py +0 -15
- requirements.txt +0 -1
- static/index.js +0 -126
- static/style.css +0 -79
- templates/index.html +0 -0
README.md
CHANGED
@@ -1,16 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Flask + dev server
|
3 |
-
emoji: ⚗️
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 2.9.1
|
8 |
-
python_version: 3.10.4
|
9 |
-
app_file: app.py
|
10 |
-
models: [osanseviero/BigGAN-deep-128, t5-small]
|
11 |
-
datasets: [emotion]
|
12 |
-
license: mit
|
13 |
-
pinned: false
|
14 |
-
---
|
15 |
-
|
16 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
app.py
CHANGED
@@ -1,57 +1,28 @@
|
|
1 |
-
import os
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
from io import BytesIO
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
-
from modules.inference import infer_t5
|
9 |
-
from modules.dataset import query_emotion
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
|
17 |
|
18 |
@app.route("/")
|
19 |
-
def
|
20 |
-
return render_template("index.html")
|
21 |
-
|
22 |
-
|
23 |
-
@app.route("/infer_biggan")
|
24 |
-
def biggan():
|
25 |
-
input = request.args.get("input")
|
26 |
-
|
27 |
-
output = requests.request(
|
28 |
-
"POST",
|
29 |
-
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
30 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
31 |
-
data=json.dumps(input),
|
32 |
-
)
|
33 |
-
|
34 |
-
return send_file(BytesIO(output.content), mimetype="image/png")
|
35 |
-
|
36 |
-
|
37 |
-
@app.route("/infer_t5")
|
38 |
-
def t5():
|
39 |
input = request.args.get("input")
|
40 |
|
41 |
-
output =
|
42 |
-
|
43 |
-
return jsonify({"output": output})
|
44 |
-
|
45 |
-
|
46 |
-
@app.route("/query_emotion")
|
47 |
-
def emotion():
|
48 |
-
start = request.args.get("start")
|
49 |
-
end = request.args.get("end")
|
50 |
-
|
51 |
-
print(start)
|
52 |
-
print(end)
|
53 |
-
|
54 |
-
output = query_emotion(int(start), int(end))
|
55 |
|
56 |
return jsonify({"output": output})
|
57 |
|
|
|
|
|
|
|
|
|
1 |
from io import BytesIO
|
2 |
+
from flask import Flask, jsonify, request
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
model_path = "gpt2"
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
8 |
+
model = GPT2LMHeadModel.from_pretrained(model_path)
|
9 |
|
|
|
|
|
10 |
|
11 |
+
def infer_title(input):
|
12 |
+
input_text = "Q: " + input + " A:"
|
13 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
14 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
15 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
16 |
+
return response
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
|
20 |
|
21 |
@app.route("/")
|
22 |
+
def endpoint():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
input = request.args.get("input")
|
24 |
|
25 |
+
output = infer_title(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
return jsonify({"output": output})
|
28 |
|
modules/dataset.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
-
|
3 |
-
dataset = load_dataset("go_emotions", split="train")
|
4 |
-
|
5 |
-
emotions = dataset.info.features["labels"].feature.names
|
6 |
-
|
7 |
-
|
8 |
-
def query_emotion(start, end):
|
9 |
-
rows = dataset[start:end]
|
10 |
-
|
11 |
-
observations = [
|
12 |
-
{"text": r[0], "emotion": emotions[r[1][0]]}
|
13 |
-
for r in zip(rows["text"], rows["labels"])
|
14 |
-
]
|
15 |
-
|
16 |
-
return observations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/inference.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
-
|
3 |
-
# Load the fine-tuned model and tokenizer
|
4 |
-
model_path = "gpt2"
|
5 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
6 |
-
model = GPT2LMHeadModel.from_pretrained(model_path)
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def infer_t5(input):
|
11 |
-
input_text = "Q: " + input + " A:"
|
12 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
13 |
-
output = model.generate(input_ids, max_length=50, temperature=0.7, num_return_sequences=1)
|
14 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
15 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
datasets==2.*
|
2 |
flask==3.0.0
|
3 |
requests==2.31.*
|
4 |
sentencepiece==0.1.*
|
|
|
|
|
1 |
flask==3.0.0
|
2 |
requests==2.31.*
|
3 |
sentencepiece==0.1.*
|
static/index.js
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
if (document.location.search.includes('dark-theme=true')) {
|
2 |
-
document.body.classList.add('dark-theme');
|
3 |
-
}
|
4 |
-
|
5 |
-
let cursor = 0;
|
6 |
-
const RANGE = 5;
|
7 |
-
const LIMIT = 16_000;
|
8 |
-
|
9 |
-
const textToImage = async (text) => {
|
10 |
-
const inferenceResponse = await fetch(`infer_biggan?input=${text}`);
|
11 |
-
const inferenceBlob = await inferenceResponse.blob();
|
12 |
-
|
13 |
-
return URL.createObjectURL(inferenceBlob);
|
14 |
-
};
|
15 |
-
|
16 |
-
const translateText = async (text) => {
|
17 |
-
const inferResponse = await fetch(`infer_t5?input=${text}`);
|
18 |
-
const inferJson = await inferResponse.json();
|
19 |
-
|
20 |
-
return inferJson.output;
|
21 |
-
};
|
22 |
-
|
23 |
-
const queryDataset = async (start, end) => {
|
24 |
-
const queryResponse = await fetch(`query_emotion?start=${start}&end=${end}`);
|
25 |
-
const queryJson = await queryResponse.json();
|
26 |
-
|
27 |
-
return queryJson.output;
|
28 |
-
};
|
29 |
-
|
30 |
-
const updateTable = async (cursor, range = RANGE) => {
|
31 |
-
const table = document.querySelector('.dataset-output');
|
32 |
-
|
33 |
-
const fragment = new DocumentFragment();
|
34 |
-
|
35 |
-
const observations = await queryDataset(cursor, cursor + range);
|
36 |
-
|
37 |
-
for (const observation of observations) {
|
38 |
-
let row = document.createElement('tr');
|
39 |
-
let text = document.createElement('td');
|
40 |
-
let emotion = document.createElement('td');
|
41 |
-
|
42 |
-
text.textContent = observation.text;
|
43 |
-
emotion.textContent = observation.emotion;
|
44 |
-
|
45 |
-
row.appendChild(text);
|
46 |
-
row.appendChild(emotion);
|
47 |
-
fragment.appendChild(row);
|
48 |
-
}
|
49 |
-
|
50 |
-
table.innerHTML = '';
|
51 |
-
|
52 |
-
table.appendChild(fragment);
|
53 |
-
|
54 |
-
table.insertAdjacentHTML(
|
55 |
-
'afterbegin',
|
56 |
-
`<thead>
|
57 |
-
<tr>
|
58 |
-
<td>text</td>
|
59 |
-
<td>emotion</td>
|
60 |
-
</tr>
|
61 |
-
</thead>`
|
62 |
-
);
|
63 |
-
};
|
64 |
-
|
65 |
-
const imageGenSelect = document.getElementById('image-gen-input');
|
66 |
-
const imageGenImage = document.querySelector('.image-gen-output');
|
67 |
-
const textGenForm = document.querySelector('.text-gen-form');
|
68 |
-
const tableButtonPrev = document.querySelector('.table-previous');
|
69 |
-
const tableButtonNext = document.querySelector('.table-next');
|
70 |
-
|
71 |
-
imageGenSelect.addEventListener('change', async (event) => {
|
72 |
-
const value = event.target.value;
|
73 |
-
|
74 |
-
try {
|
75 |
-
imageGenImage.src = await textToImage(value);
|
76 |
-
imageGenImage.alt = value + ' generated from BigGAN AI model';
|
77 |
-
} catch (err) {
|
78 |
-
console.error(err);
|
79 |
-
}
|
80 |
-
});
|
81 |
-
|
82 |
-
textGenForm.addEventListener('submit', async (event) => {
|
83 |
-
event.preventDefault();
|
84 |
-
|
85 |
-
const textGenInput = document.getElementById('text-gen-input');
|
86 |
-
const textGenParagraph = document.querySelector('.text-gen-output');
|
87 |
-
|
88 |
-
try {
|
89 |
-
textGenParagraph.textContent = await translateText(textGenInput.value);
|
90 |
-
} catch (err) {
|
91 |
-
console.error(err);
|
92 |
-
}
|
93 |
-
});
|
94 |
-
|
95 |
-
tableButtonPrev.addEventListener('click', () => {
|
96 |
-
cursor = cursor > RANGE ? cursor - RANGE : 0;
|
97 |
-
|
98 |
-
if (cursor < RANGE) {
|
99 |
-
tableButtonPrev.classList.add('hidden');
|
100 |
-
}
|
101 |
-
if (cursor < LIMIT - RANGE) {
|
102 |
-
tableButtonNext.classList.remove('hidden');
|
103 |
-
}
|
104 |
-
|
105 |
-
updateTable(cursor);
|
106 |
-
});
|
107 |
-
|
108 |
-
tableButtonNext.addEventListener('click', () => {
|
109 |
-
cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
|
110 |
-
|
111 |
-
if (cursor >= RANGE) {
|
112 |
-
tableButtonPrev.classList.remove('hidden');
|
113 |
-
}
|
114 |
-
if (cursor >= LIMIT - RANGE) {
|
115 |
-
tableButtonNext.classList.add('hidden');
|
116 |
-
}
|
117 |
-
|
118 |
-
updateTable(cursor);
|
119 |
-
});
|
120 |
-
|
121 |
-
textToImage(imageGenSelect.value)
|
122 |
-
.then((image) => (imageGenImage.src = image))
|
123 |
-
.catch(console.error);
|
124 |
-
|
125 |
-
updateTable(cursor)
|
126 |
-
.catch(console.error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static/style.css
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
body {
|
2 |
-
--text: hsl(0 0% 15%);
|
3 |
-
padding: 2.5rem;
|
4 |
-
font-family: sans-serif;
|
5 |
-
color: var(--text);
|
6 |
-
}
|
7 |
-
body.dark-theme {
|
8 |
-
--text: hsl(0 0% 90%);
|
9 |
-
background-color: hsl(223 39% 7%);
|
10 |
-
}
|
11 |
-
|
12 |
-
main {
|
13 |
-
max-width: 80rem;
|
14 |
-
text-align: center;
|
15 |
-
}
|
16 |
-
|
17 |
-
section {
|
18 |
-
display: flex;
|
19 |
-
flex-direction: column;
|
20 |
-
align-items: center;
|
21 |
-
}
|
22 |
-
|
23 |
-
a {
|
24 |
-
color: var(--text);
|
25 |
-
}
|
26 |
-
|
27 |
-
select, input, button, .text-gen-output {
|
28 |
-
padding: 0.5rem 1rem;
|
29 |
-
}
|
30 |
-
|
31 |
-
select, img, input {
|
32 |
-
margin: 0.5rem auto 1rem;
|
33 |
-
}
|
34 |
-
|
35 |
-
form {
|
36 |
-
width: 25rem;
|
37 |
-
margin: 0 auto;
|
38 |
-
}
|
39 |
-
|
40 |
-
input {
|
41 |
-
width: 70%;
|
42 |
-
}
|
43 |
-
|
44 |
-
button {
|
45 |
-
cursor: pointer;
|
46 |
-
}
|
47 |
-
|
48 |
-
.text-gen-output {
|
49 |
-
min-height: 1.2rem;
|
50 |
-
margin: 1rem;
|
51 |
-
border: 0.5px solid grey;
|
52 |
-
}
|
53 |
-
|
54 |
-
#dataset button {
|
55 |
-
width: 6rem;
|
56 |
-
margin: 0.5rem;
|
57 |
-
}
|
58 |
-
|
59 |
-
#dataset button.hidden {
|
60 |
-
visibility: hidden;
|
61 |
-
}
|
62 |
-
|
63 |
-
table {
|
64 |
-
max-width: 40rem;
|
65 |
-
text-align: left;
|
66 |
-
border-collapse: collapse;
|
67 |
-
}
|
68 |
-
|
69 |
-
thead {
|
70 |
-
font-weight: bold;
|
71 |
-
}
|
72 |
-
|
73 |
-
td {
|
74 |
-
padding: 0.5rem;
|
75 |
-
}
|
76 |
-
|
77 |
-
td:not(thead td) {
|
78 |
-
border: 0.5px solid grey;
|
79 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
templates/index.html
DELETED
The diff for this file is too large to render.
See raw diff
|
|