es_gpt / es_gpt.py
hunkim's picture
Update es_gpt.py
7c844be
raw
history blame
2.2 kB
from elasticsearch import Elasticsearch
import os
import json
import requests
ES_URL = os.environ["ES_URL"]
class ESGPT:
def __init__(self, index_name):
self.es = Elasticsearch(ES_URL)
self.index_name = index_name
self.model_engine = os.environ["OPENAI_GPT_ENGINE"]
self.api_key = os.environ["OPENAI_API_KEY"]
def index(self, doc_id, doc):
self.es.index(index=self.index_name,
id=doc_id,
document=doc)
def search(self, query):
body = {
"query": {
"query_string": {"query": query}
}
}
results = self.es.search(index=self.index_name, body=body)
return results['hits']['hits']
def _paper_results_to_text(self, results):
text_result = ""
for paper in results:
title = ""
if "title" in paper["_source"]:
title = paper["_source"]["title"]
abstract = ""
if "abctract" in paper["_source"]:
abstract = paper["_source"]["abstract"]
paper_str = f"{title}:\n{abstract[:100]}\n\n"
text_result += paper_str
return text_result
def summarize(self, query, results):
# Generate summaries for each search result
result_json_str = self._paper_results_to_text(results)
if result_json_str == "":
result_json_str = "No results found"
print(result_json_str[:500])
body = {
"model": self.model_engine,
"prompt": f"Please summarize the following search results for query: {query}:\n{result_json_str[:1000]}",
"max_tokens": 1000,
"n": 1,
"stop": None,
"temperature": 0.5,
"stream": True,
}
headers = {"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"}
resp = requests.post("https://api.openai.com/v1/completions",
headers=headers,
data=json.dumps(body),
stream=True)
return resp