CaptionFLAN-T5 / VT5.py
hungchiayu's picture
Upload 2 files
dd905c9
from typing import Tuple
import torch
from torch import nn
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
Trainer,
TrainingArguments,
)
class MLP(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class VT5(nn.Module):
def __init__(self,t5,tokenizer,vision_model,image_emb_size=512,prefix_length=10):
super().__init__()
self.t5 = t5
self.tokenizer = tokenizer
self.t5_embedding_size = t5.get_input_embeddings().embedding_dim
self.image_emb_size = image_emb_size
self.prefix_length = prefix_length
self.vision_model = vision_model
## This is the mapping networks that projects the image embedding space to the language model vector space
self.prefix_projection = MLP((self.image_emb_size, (self.t5_embedding_size * prefix_length) // 2,
self.t5_embedding_size * prefix_length))
def forward(self,pixel_values,output_ids):
image_embeds = self.vision_model(pixel_values).image_embeds
mapped_embedding = self.prefix_projection(image_embeds).view(-1,self.prefix_length,self.t5_embedding_size)
##concat_embedding = torch.cat([text_embedding,mapped_embedding],axis=1)
output_ids[output_ids == self.tokenizer.pad_token_id] = -100 ## Do not compute loss w.r.t pad tokens
outputs = self.t5(inputs_embeds=mapped_embedding,labels=output_ids)
return outputs
def generate_caption(self,pixel_values):
image_embeds = self.vision_model(pixel_values).image_embeds
mapped_embedding = self.prefix_projection(image_embeds).view(-1,self.prefix_length,self.t5_embedding_size)
output_tokens = self.t5.generate(inputs_embeds=mapped_embedding)
caption = self.tokenizer.decode(output_tokens[0],skip_special_tokens=True)
return caption