File size: 8,058 Bytes
e248cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from transformers.integrations import TensorBoardCallback
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq
from transformers import TrainerCallback, TrainerState, TrainerControl
from transformers.trainer import TRAINING_ARGS_NAME
from torch.utils.tensorboard import SummaryWriter
import datasets
import torch
import os
import re
import sys
import wandb
import argparse
from datetime import datetime
from functools import partial
from tqdm import tqdm
from utils import *

# LoRA
from peft import (
    TaskType,
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,   
)

# Replace with your own api_key and project name
os.environ['WANDB_API_KEY'] = 'ecf1e5e4f47441d46822d38a3249d62e8fc94db4'
os.environ['WANDB_PROJECT'] = 'fingpt-forecaster'


class GenerationEvalCallback(TrainerCallback):
    
    def __init__(self, eval_dataset, ignore_until_epoch=0):
        self.eval_dataset = eval_dataset
        self.ignore_until_epoch = ignore_until_epoch
    
    def on_evaluate(self, args, state: TrainerState, control: TrainerControl, **kwargs):
        
        if state.epoch is None or state.epoch + 1 < self.ignore_until_epoch:
            return
            
        if state.is_local_process_zero:
            model = kwargs['model']
            tokenizer = kwargs['tokenizer']
            generated_texts, reference_texts = [], []

            for feature in tqdm(self.eval_dataset):
                prompt = feature['prompt']
                gt = feature['answer']
                inputs = tokenizer(
                    prompt, return_tensors='pt',
                    padding=False, max_length=4096
                )
                inputs = {key: value.to(model.device) for key, value in inputs.items()}
                
                res = model.generate(
                    **inputs, 
                    use_cache=True
                )
                output = tokenizer.decode(res[0], skip_special_tokens=True)
                answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)

                generated_texts.append(answer)
                reference_texts.append(gt)

                # print("GENERATED: ", answer)
                # print("REFERENCE: ", gt)

            metrics = calc_metrics(reference_texts, generated_texts)
            
            # Ensure wandb is initialized
            if wandb.run is None:
                wandb.init()
                
            wandb.log(metrics, step=state.global_step)
            torch.cuda.empty_cache()            


def main(args):
        
    model_name = parse_model_name(args.base_model, args.from_remote)
    
    # load model
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        # load_in_8bit=True,
        trust_remote_code=True
    )
    if args.local_rank == 0:
        print(model)
    
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    
    # load data
    dataset_list = load_dataset(args.dataset, args.from_remote)
    
    dataset_train = datasets.concatenate_datasets([d['train'] for d in dataset_list]).shuffle(seed=42)
    
    if args.test_dataset:
        dataset_list = load_dataset(args.test_dataset, args.from_remote)
            
    dataset_test = datasets.concatenate_datasets([d['test'] for d in dataset_list])
    
    original_dataset = datasets.DatasetDict({'train': dataset_train, 'test': dataset_test})
    
    eval_dataset = original_dataset['test'].shuffle(seed=42).select(range(50))
    
    dataset = original_dataset.map(partial(tokenize, args, tokenizer))
    print('original dataset length: ', len(dataset['train']))
    dataset = dataset.filter(lambda x: not x['exceed_max_length'])
    print('filtered dataset length: ', len(dataset['train']))
    dataset = dataset.remove_columns(
        ['prompt', 'answer', 'label', 'symbol', 'period', 'exceed_max_length']
    )
    
    current_time = datetime.now()
    formatted_time = current_time.strftime('%Y%m%d%H%M')
    
    training_args = TrainingArguments(
        output_dir=f'finetuned_models/{args.run_name}_{formatted_time}', # 保存位置
        logging_steps=args.log_interval,
        num_train_epochs=args.num_epochs,
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        dataloader_num_workers=args.num_workers,
        learning_rate=args.learning_rate,
        weight_decay=args.weight_decay,
        warmup_ratio=args.warmup_ratio,
        lr_scheduler_type=args.scheduler,
        save_steps=args.eval_steps,
        eval_steps=args.eval_steps,
        fp16=True,
        deepspeed=args.ds_config,
        evaluation_strategy=args.evaluation_strategy,
        remove_unused_columns=False,
        report_to='wandb',
        run_name=args.run_name
    )
    
    model.gradient_checkpointing_enable()
    model.enable_input_require_grads()
    model.is_parallelizable = True
    model.model_parallel = True
    model.model.config.use_cache = False
    
    # model = prepare_model_for_int8_training(model)

    # setup peft
    peft_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=8,
        lora_alpha=16,
        lora_dropout=0.1,
        target_modules=lora_module_dict[args.base_model],
        bias='none',
    )
    model = get_peft_model(model, peft_config)
    
    # Train
    trainer = Trainer(
        model=model, 
        args=training_args, 
        train_dataset=dataset['train'],
        eval_dataset=dataset['test'], 
        tokenizer=tokenizer,
        data_collator=DataCollatorForSeq2Seq(
            tokenizer, padding=True,
            return_tensors="pt"
        ),
        callbacks=[
            GenerationEvalCallback(
                eval_dataset=eval_dataset,
                ignore_until_epoch=round(0.3 * args.num_epochs)
            )
        ]
    )
    
    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)
    
    torch.cuda.empty_cache()
    trainer.train()

    # save model
    model.save_pretrained(training_args.output_dir)


if __name__ == "__main__":
    
    parser = argparse.ArgumentParser()
    parser.add_argument("--local_rank", default=0, type=int)
    parser.add_argument("--run_name", default='local-test', type=str)
    parser.add_argument("--dataset", required=True, type=str)
    parser.add_argument("--test_dataset", type=str)
    parser.add_argument("--base_model", required=True, type=str, choices=['chatglm2', 'llama2'])
    parser.add_argument("--max_length", default=512, type=int)
    parser.add_argument("--batch_size", default=4, type=int, help="The train batch size per device")
    parser.add_argument("--learning_rate", default=1e-4, type=float, help="The learning rate")
    parser.add_argument("--weight_decay", default=0.01, type=float, help="weight decay")
    parser.add_argument("--num_epochs", default=8, type=float, help="The training epochs")
    parser.add_argument("--num_workers", default=8, type=int, help="dataloader workers")
    parser.add_argument("--log_interval", default=20, type=int)
    parser.add_argument("--gradient_accumulation_steps", default=8, type=int)
    parser.add_argument("--warmup_ratio", default=0.05, type=float)
    parser.add_argument("--ds_config", default='./config_new.json', type=str)
    parser.add_argument("--scheduler", default='linear', type=str)
    parser.add_argument("--instruct_template", default='default')
    parser.add_argument("--evaluation_strategy", default='steps', type=str)    
    parser.add_argument("--eval_steps", default=0.1, type=float)    
    parser.add_argument("--from_remote", default=False, type=bool)    
    args = parser.parse_args()
    
    wandb.login()
    main(args)