Spaces:
Runtime error
Runtime error
File size: 8,058 Bytes
e248cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from transformers.integrations import TensorBoardCallback
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq
from transformers import TrainerCallback, TrainerState, TrainerControl
from transformers.trainer import TRAINING_ARGS_NAME
from torch.utils.tensorboard import SummaryWriter
import datasets
import torch
import os
import re
import sys
import wandb
import argparse
from datetime import datetime
from functools import partial
from tqdm import tqdm
from utils import *
# LoRA
from peft import (
TaskType,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
# Replace with your own api_key and project name
os.environ['WANDB_API_KEY'] = 'ecf1e5e4f47441d46822d38a3249d62e8fc94db4'
os.environ['WANDB_PROJECT'] = 'fingpt-forecaster'
class GenerationEvalCallback(TrainerCallback):
def __init__(self, eval_dataset, ignore_until_epoch=0):
self.eval_dataset = eval_dataset
self.ignore_until_epoch = ignore_until_epoch
def on_evaluate(self, args, state: TrainerState, control: TrainerControl, **kwargs):
if state.epoch is None or state.epoch + 1 < self.ignore_until_epoch:
return
if state.is_local_process_zero:
model = kwargs['model']
tokenizer = kwargs['tokenizer']
generated_texts, reference_texts = [], []
for feature in tqdm(self.eval_dataset):
prompt = feature['prompt']
gt = feature['answer']
inputs = tokenizer(
prompt, return_tensors='pt',
padding=False, max_length=4096
)
inputs = {key: value.to(model.device) for key, value in inputs.items()}
res = model.generate(
**inputs,
use_cache=True
)
output = tokenizer.decode(res[0], skip_special_tokens=True)
answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
generated_texts.append(answer)
reference_texts.append(gt)
# print("GENERATED: ", answer)
# print("REFERENCE: ", gt)
metrics = calc_metrics(reference_texts, generated_texts)
# Ensure wandb is initialized
if wandb.run is None:
wandb.init()
wandb.log(metrics, step=state.global_step)
torch.cuda.empty_cache()
def main(args):
model_name = parse_model_name(args.base_model, args.from_remote)
# load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
# load_in_8bit=True,
trust_remote_code=True
)
if args.local_rank == 0:
print(model)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# load data
dataset_list = load_dataset(args.dataset, args.from_remote)
dataset_train = datasets.concatenate_datasets([d['train'] for d in dataset_list]).shuffle(seed=42)
if args.test_dataset:
dataset_list = load_dataset(args.test_dataset, args.from_remote)
dataset_test = datasets.concatenate_datasets([d['test'] for d in dataset_list])
original_dataset = datasets.DatasetDict({'train': dataset_train, 'test': dataset_test})
eval_dataset = original_dataset['test'].shuffle(seed=42).select(range(50))
dataset = original_dataset.map(partial(tokenize, args, tokenizer))
print('original dataset length: ', len(dataset['train']))
dataset = dataset.filter(lambda x: not x['exceed_max_length'])
print('filtered dataset length: ', len(dataset['train']))
dataset = dataset.remove_columns(
['prompt', 'answer', 'label', 'symbol', 'period', 'exceed_max_length']
)
current_time = datetime.now()
formatted_time = current_time.strftime('%Y%m%d%H%M')
training_args = TrainingArguments(
output_dir=f'finetuned_models/{args.run_name}_{formatted_time}', # 保存位置
logging_steps=args.log_interval,
num_train_epochs=args.num_epochs,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
dataloader_num_workers=args.num_workers,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.scheduler,
save_steps=args.eval_steps,
eval_steps=args.eval_steps,
fp16=True,
deepspeed=args.ds_config,
evaluation_strategy=args.evaluation_strategy,
remove_unused_columns=False,
report_to='wandb',
run_name=args.run_name
)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.is_parallelizable = True
model.model_parallel = True
model.model.config.use_cache = False
# model = prepare_model_for_int8_training(model)
# setup peft
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=8,
lora_alpha=16,
lora_dropout=0.1,
target_modules=lora_module_dict[args.base_model],
bias='none',
)
model = get_peft_model(model, peft_config)
# Train
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
tokenizer=tokenizer,
data_collator=DataCollatorForSeq2Seq(
tokenizer, padding=True,
return_tensors="pt"
),
callbacks=[
GenerationEvalCallback(
eval_dataset=eval_dataset,
ignore_until_epoch=round(0.3 * args.num_epochs)
)
]
)
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
torch.cuda.empty_cache()
trainer.train()
# save model
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--run_name", default='local-test', type=str)
parser.add_argument("--dataset", required=True, type=str)
parser.add_argument("--test_dataset", type=str)
parser.add_argument("--base_model", required=True, type=str, choices=['chatglm2', 'llama2'])
parser.add_argument("--max_length", default=512, type=int)
parser.add_argument("--batch_size", default=4, type=int, help="The train batch size per device")
parser.add_argument("--learning_rate", default=1e-4, type=float, help="The learning rate")
parser.add_argument("--weight_decay", default=0.01, type=float, help="weight decay")
parser.add_argument("--num_epochs", default=8, type=float, help="The training epochs")
parser.add_argument("--num_workers", default=8, type=int, help="dataloader workers")
parser.add_argument("--log_interval", default=20, type=int)
parser.add_argument("--gradient_accumulation_steps", default=8, type=int)
parser.add_argument("--warmup_ratio", default=0.05, type=float)
parser.add_argument("--ds_config", default='./config_new.json', type=str)
parser.add_argument("--scheduler", default='linear', type=str)
parser.add_argument("--instruct_template", default='default')
parser.add_argument("--evaluation_strategy", default='steps', type=str)
parser.add_argument("--eval_steps", default=0.1, type=float)
parser.add_argument("--from_remote", default=False, type=bool)
args = parser.parse_args()
wandb.login()
main(args) |