SiddarthaRachakonda
commited on
Commit
•
afe6333
1
Parent(s):
cab27a8
added app:main
Browse files- Dockerfile +1 -1
- app.py +2 -1
- app/callbacks.py +24 -0
- app/chains.py +53 -0
- app/crud.py +23 -0
- app/data_indexing.py +150 -0
- app/database.py +12 -0
- app/main.py +89 -0
- app/models.py +21 -0
- app/prompts.py +51 -0
- app/schemas.py +19 -0
- requirements.txt +12 -1
Dockerfile
CHANGED
@@ -16,4 +16,4 @@ RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
|
16 |
# Again, ensure the copied files are owned by 'user'
|
17 |
COPY --chown=user . /app
|
18 |
# Specify the command to run when the container starts
|
19 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
16 |
# Again, ensure the copied files are owned by 'user'
|
17 |
COPY --chown=user . /app
|
18 |
# Specify the command to run when the container starts
|
19 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
app = FastAPI()
|
3 |
@app.get("/")
|
4 |
def greet_json():
|
5 |
-
return {"Hello": "World!"}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
|
3 |
app = FastAPI()
|
4 |
@app.get("/")
|
5 |
def greet_json():
|
6 |
+
return {"Hello": "World!"}
|
app/callbacks.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, List
|
2 |
+
from langchain_core.callbacks import BaseCallbackHandler
|
3 |
+
import schemas
|
4 |
+
import crud
|
5 |
+
|
6 |
+
|
7 |
+
class LogResponseCallback(BaseCallbackHandler):
|
8 |
+
|
9 |
+
def __init__(self, user_request: schemas.UserRequest, db):
|
10 |
+
super().__init__()
|
11 |
+
self.user_request = user_request
|
12 |
+
self.db = db
|
13 |
+
|
14 |
+
def on_llm_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:
|
15 |
+
"""Run when llm ends running."""
|
16 |
+
# TODO: The function on_llm_end is going to be called when the LLM stops sending
|
17 |
+
# the response. Use the crud.add_message function to capture that response.
|
18 |
+
raise NotImplemented
|
19 |
+
|
20 |
+
def on_llm_start(
|
21 |
+
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
22 |
+
) -> Any:
|
23 |
+
for prompt in prompts:
|
24 |
+
print(prompt)
|
app/chains.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
+
from langchain_core.runnables import RunnablePassthrough
|
4 |
+
import schemas
|
5 |
+
from prompts import (
|
6 |
+
raw_prompt,
|
7 |
+
raw_prompt_formatted,
|
8 |
+
format_context,
|
9 |
+
tokenizer
|
10 |
+
)
|
11 |
+
from data_indexing import DataIndexer
|
12 |
+
|
13 |
+
data_indexer = DataIndexer()
|
14 |
+
|
15 |
+
llm = HuggingFaceEndpoint(
|
16 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
17 |
+
huggingfacehub_api_token=os.environ['HF_TOKEN'],
|
18 |
+
max_new_tokens=512,
|
19 |
+
stop_sequences=[tokenizer.eos_token],
|
20 |
+
streaming=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
simple_chain = (raw_prompt | llm).with_types(input_type=schemas.UserQuestion)
|
24 |
+
|
25 |
+
# TODO: create formatted_chain by piping raw_prompt_formatted and the LLM endpoint.
|
26 |
+
formatted_chain = raw_prompt_formatted | llm
|
27 |
+
|
28 |
+
# TODO: use history_prompt_formatted and HistoryInput to create the history_chain
|
29 |
+
history_chain = None
|
30 |
+
|
31 |
+
# TODO: Let's construct the standalone_chain by piping standalone_prompt_formatted with the LLM
|
32 |
+
standalone_chain = None
|
33 |
+
|
34 |
+
input_1 = RunnablePassthrough.assign(new_question=standalone_chain)
|
35 |
+
input_2 = {
|
36 |
+
'context': lambda x: format_context(data_indexer.search(x['new_question'])),
|
37 |
+
'standalone_question': lambda x: x['new_question']
|
38 |
+
}
|
39 |
+
input_to_rag_chain = input_1 | input_2
|
40 |
+
|
41 |
+
# TODO: use input_to_rag_chain, rag_prompt_formatted,
|
42 |
+
# HistoryInput and the LLM to build the rag_chain.
|
43 |
+
rag_chain = None
|
44 |
+
|
45 |
+
# TODO: Implement the filtered_rag_chain. It should be the
|
46 |
+
# same as the rag_chain but with hybrid_search = True.
|
47 |
+
filtered_rag_chain = None
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
app/crud.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sqlalchemy.orm import Session
|
2 |
+
import models, schemas
|
3 |
+
|
4 |
+
|
5 |
+
def get_or_create_user(db: Session, username: str):
|
6 |
+
user = db.query(models.User).filter(models.User.username == username).first()
|
7 |
+
if not user:
|
8 |
+
user = models.User(username=username)
|
9 |
+
db.add(user)
|
10 |
+
db.commit()
|
11 |
+
db.refresh(user)
|
12 |
+
return user
|
13 |
+
|
14 |
+
def add_message(db: Session, message: schemas.MessageBase, username: str):
|
15 |
+
# TODO: Implement the add_message function. It should:
|
16 |
+
# - get or create the user with the username
|
17 |
+
# - create a models.Message instance
|
18 |
+
# - pass the retrieved user to the message instance
|
19 |
+
# - save the message instance to the database
|
20 |
+
raise NotImplemented
|
21 |
+
|
22 |
+
def get_user_chat_history(db: Session, username: str):
|
23 |
+
raise NotImplemented
|
app/data_indexing.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
from pathlib import Path
|
4 |
+
from pinecone.grpc import PineconeGRPC as Pinecone
|
5 |
+
from pinecone import ServerlessSpec
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_openai import OpenAIEmbeddings
|
8 |
+
|
9 |
+
current_dir = Path(__file__).resolve().parent
|
10 |
+
|
11 |
+
|
12 |
+
class DataIndexer:
|
13 |
+
|
14 |
+
source_file = os.path.join(current_dir, 'sources.txt')
|
15 |
+
|
16 |
+
def __init__(self, index_name='langchain-repo') -> None:
|
17 |
+
|
18 |
+
# TODO: choose your embedding model
|
19 |
+
# self.embedding_client = InferenceClient(
|
20 |
+
# "dunzhang/stella_en_1.5B_v5",
|
21 |
+
# token=os.environ['HF_TOKEN'],
|
22 |
+
# )
|
23 |
+
self.embedding_client = OpenAIEmbeddings()
|
24 |
+
self.index_name = index_name
|
25 |
+
self.pinecone_client = Pinecone(api_key=os.environ.get('PINECONE_API_KEY'))
|
26 |
+
|
27 |
+
if index_name not in self.pinecone_client.list_indexes().names():
|
28 |
+
# TODO: create your index if it doesn't exist. Use the create_index function.
|
29 |
+
# Make sure to choose the dimension that corresponds to your embedding model
|
30 |
+
pass
|
31 |
+
|
32 |
+
self.index = self.pinecone_client.Index(self.index_name)
|
33 |
+
# TODO: make sure to build the index.
|
34 |
+
self.source_index = None
|
35 |
+
|
36 |
+
def get_source_index(self):
|
37 |
+
if not os.path.isfile(self.source_file):
|
38 |
+
print('No source file')
|
39 |
+
return None
|
40 |
+
|
41 |
+
print('create source index')
|
42 |
+
|
43 |
+
with open(self.source_file, 'r') as file:
|
44 |
+
sources = file.readlines()
|
45 |
+
|
46 |
+
sources = [s.rstrip('\n') for s in sources]
|
47 |
+
vectorstore = Chroma.from_texts(
|
48 |
+
sources, embedding=self.embedding_client
|
49 |
+
)
|
50 |
+
return vectorstore
|
51 |
+
|
52 |
+
def index_data(self, docs, batch_size=32):
|
53 |
+
|
54 |
+
with open(self.source_file, 'a') as file:
|
55 |
+
for doc in docs:
|
56 |
+
file.writelines(doc.metadata['source'] + '\n')
|
57 |
+
|
58 |
+
for i in range(0, len(docs), batch_size):
|
59 |
+
batch = docs[i: i + batch_size]
|
60 |
+
|
61 |
+
# TODO: create a list of the vector representations of each text data in the batch
|
62 |
+
# TODO: choose your embedding model
|
63 |
+
# values = self.embedding_client.embed_documents([
|
64 |
+
# doc.page_content for doc in batch
|
65 |
+
# ])
|
66 |
+
|
67 |
+
# values = self.embedding_client.feature_extraction([
|
68 |
+
# doc.page_content for doc in batch
|
69 |
+
# ])
|
70 |
+
values = None
|
71 |
+
|
72 |
+
# TODO: create a list of unique identifiers for each element in the batch with the uuid package.
|
73 |
+
vector_ids = None
|
74 |
+
|
75 |
+
# TODO: create a list of dictionaries representing the metadata. Capture the text data
|
76 |
+
# with the "text" key, and make sure to capture the rest of the doc.metadata.
|
77 |
+
metadatas = None
|
78 |
+
|
79 |
+
# create a list of dictionaries with keys "id" (the unique identifiers), "values"
|
80 |
+
# (the vector representation), and "metadata" (the metadata).
|
81 |
+
vectors = [{
|
82 |
+
'id': vector_id,
|
83 |
+
'values': value,
|
84 |
+
'metadata': metadata
|
85 |
+
} for vector_id, value, metadata in zip(vector_ids, values, metadatas)]
|
86 |
+
|
87 |
+
try:
|
88 |
+
# TODO: Use the function upsert to upload the data to the database.
|
89 |
+
upsert_response = None
|
90 |
+
print(upsert_response)
|
91 |
+
except Exception as e:
|
92 |
+
print(e)
|
93 |
+
|
94 |
+
def search(self, text_query, top_k=5, hybrid_search=False):
|
95 |
+
|
96 |
+
filter = None
|
97 |
+
if hybrid_search and self.source_index:
|
98 |
+
# I implemented the filtering process to pull the 50 most relevant file names
|
99 |
+
# to the question. Make sure to adjust this number as you see fit.
|
100 |
+
source_docs = self.source_index.similarity_search(text_query, 50)
|
101 |
+
filter = {"source": {"$in":[doc.page_content for doc in source_docs]}}
|
102 |
+
|
103 |
+
# TODO: embed the text_query by using the embedding model
|
104 |
+
# TODO: choose your embedding model
|
105 |
+
# vector = self.embedding_client.feature_extraction(text_query)
|
106 |
+
# vector = self.embedding_client.embed_query(text_query)
|
107 |
+
vector = None
|
108 |
+
|
109 |
+
# TODO: use the vector representation of the text_query to
|
110 |
+
# search the database by using the query function.
|
111 |
+
result = None
|
112 |
+
|
113 |
+
docs = []
|
114 |
+
for res in result["matches"]:
|
115 |
+
# TODO: From the result's metadata, extract the "text" element.
|
116 |
+
pass
|
117 |
+
|
118 |
+
return docs
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == '__main__':
|
122 |
+
|
123 |
+
from langchain_community.document_loaders import GitLoader
|
124 |
+
from langchain_text_splitters import (
|
125 |
+
Language,
|
126 |
+
RecursiveCharacterTextSplitter,
|
127 |
+
)
|
128 |
+
|
129 |
+
loader = GitLoader(
|
130 |
+
clone_url="https://github.com/langchain-ai/langchain",
|
131 |
+
repo_path="./code_data/langchain_repo/",
|
132 |
+
branch="master",
|
133 |
+
)
|
134 |
+
|
135 |
+
python_splitter = RecursiveCharacterTextSplitter.from_language(
|
136 |
+
language=Language.PYTHON, chunk_size=10000, chunk_overlap=100
|
137 |
+
)
|
138 |
+
|
139 |
+
docs = loader.load()
|
140 |
+
docs = [doc for doc in docs if doc.metadata['file_type'] in ['.py', '.md']]
|
141 |
+
docs = [doc for doc in docs if len(doc.page_content) < 50000]
|
142 |
+
docs = python_splitter.split_documents(docs)
|
143 |
+
for doc in docs:
|
144 |
+
doc.page_content = '# {}\n\n'.format(doc.metadata['source']) + doc.page_content
|
145 |
+
|
146 |
+
indexer = DataIndexer()
|
147 |
+
with open('/app/sources.txt', 'a') as file:
|
148 |
+
for doc in docs:
|
149 |
+
file.writelines(doc.metadata['source'] + '\n')
|
150 |
+
indexer.index_data(docs)
|
app/database.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sqlalchemy import create_engine
|
2 |
+
from sqlalchemy.ext.declarative import declarative_base
|
3 |
+
from sqlalchemy.orm import sessionmaker
|
4 |
+
|
5 |
+
SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"
|
6 |
+
|
7 |
+
engine = create_engine(
|
8 |
+
SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
|
9 |
+
)
|
10 |
+
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
|
11 |
+
|
12 |
+
Base = declarative_base()
|
app/main.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.runnables import Runnable
|
2 |
+
from langchain_core.callbacks import BaseCallbackHandler
|
3 |
+
from fastapi import FastAPI, Request, Depends
|
4 |
+
from sse_starlette.sse import EventSourceResponse
|
5 |
+
from langserve.serialization import WellKnownLCSerializer
|
6 |
+
from typing import List
|
7 |
+
from sqlalchemy.orm import Session
|
8 |
+
|
9 |
+
import schemas
|
10 |
+
from chains import simple_chain, formatted_chain
|
11 |
+
import crud, models, schemas
|
12 |
+
from database import SessionLocal, engine
|
13 |
+
from callbacks import LogResponseCallback
|
14 |
+
|
15 |
+
|
16 |
+
models.Base.metadata.create_all(bind=engine)
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
def get_db():
|
21 |
+
db = SessionLocal()
|
22 |
+
try:
|
23 |
+
yield db
|
24 |
+
finally:
|
25 |
+
db.close()
|
26 |
+
|
27 |
+
|
28 |
+
async def generate_stream(input_data: schemas.BaseModel, runnable: Runnable, callbacks: List[BaseCallbackHandler]=[]):
|
29 |
+
for output in runnable.stream(input_data.dict(), config={"callbacks": callbacks}):
|
30 |
+
data = WellKnownLCSerializer().dumps(output).decode("utf-8")
|
31 |
+
yield {'data': data, "event": "data"}
|
32 |
+
yield {"event": "end"}
|
33 |
+
|
34 |
+
|
35 |
+
@app.post("/simple/stream")
|
36 |
+
async def simple_stream(request: Request):
|
37 |
+
data = await request.json()
|
38 |
+
user_question = schemas.UserQuestion(**data['input'])
|
39 |
+
return EventSourceResponse(generate_stream(user_question, simple_chain))
|
40 |
+
|
41 |
+
|
42 |
+
@app.post("/formatted/stream")
|
43 |
+
async def formatted_stream(request: Request):
|
44 |
+
# TODO: use the formatted_chain to implement the "/formatted/stream" endpoint.
|
45 |
+
data = await request.json()
|
46 |
+
user_question = schemas.UserQuestion(**data['input'])
|
47 |
+
return EventSourceResponse(generate_stream(user_question, formatted_chain))
|
48 |
+
|
49 |
+
|
50 |
+
@app.post("/history/stream")
|
51 |
+
async def history_stream(request: Request, db: Session = Depends(get_db)):
|
52 |
+
# TODO: Let's implement the "/history/stream" endpoint. The endpoint should follow those steps:
|
53 |
+
# - The endpoint receives the request
|
54 |
+
# - The request is parsed into a user request
|
55 |
+
# - The user request is used to pull the chat history of the user
|
56 |
+
# - We add as part of the user history the current question by using add_message.
|
57 |
+
# - We create an instance of HistoryInput by using format_chat_history.
|
58 |
+
# - We use the history input within the history chain.
|
59 |
+
raise NotImplemented
|
60 |
+
|
61 |
+
|
62 |
+
@app.post("/rag/stream")
|
63 |
+
async def rag_stream(request: Request, db: Session = Depends(get_db)):
|
64 |
+
# TODO: Let's implement the "/rag/stream" endpoint. The endpoint should follow those steps:
|
65 |
+
# - The endpoint receives the request
|
66 |
+
# - The request is parsed into a user request
|
67 |
+
# - The user request is used to pull the chat history of the user
|
68 |
+
# - We add as part of the user history the current question by using add_message.
|
69 |
+
# - We create an instance of HistoryInput by using format_chat_history.
|
70 |
+
# - We use the history input within the rag chain.
|
71 |
+
raise NotImplemented
|
72 |
+
|
73 |
+
|
74 |
+
@app.post("/filtered_rag/stream")
|
75 |
+
async def filtered_rag_stream(request: Request, db: Session = Depends(get_db)):
|
76 |
+
# TODO: Let's implement the "/filtered_rag/stream" endpoint. The endpoint should follow those steps:
|
77 |
+
# - The endpoint receives the request
|
78 |
+
# - The request is parsed into a user request
|
79 |
+
# - The user request is used to pull the chat history of the user
|
80 |
+
# - We add as part of the user history the current question by using add_message.
|
81 |
+
# - We create an instance of HistoryInput by using format_chat_history.
|
82 |
+
# - We use the history input within the filtered rag chain.
|
83 |
+
raise NotImplemented
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
import uvicorn
|
89 |
+
uvicorn.run("main:app", host="localhost", reload=True, port=8000)
|
app/models.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sqlalchemy import Column, ForeignKey, Integer, String, DateTime
|
2 |
+
from sqlalchemy.orm import relationship
|
3 |
+
|
4 |
+
from database import Base
|
5 |
+
|
6 |
+
class User(Base):
|
7 |
+
__tablename__ = "users"
|
8 |
+
|
9 |
+
id = Column(Integer, primary_key=True, index=True)
|
10 |
+
username = Column(String, unique=True, index=True)
|
11 |
+
messages = relationship("Message", back_populates="user")
|
12 |
+
|
13 |
+
# TODO: Implement the Message SQLAlchemy model. Message should have a primary key,
|
14 |
+
# a message attribute to store the content of messages, a type, AI or Human,
|
15 |
+
# depending on if it is a user question or an AI response, a timestamp to
|
16 |
+
# order by time and a user attribute to get the user instance associated
|
17 |
+
# with the message. We also need a user_id that will use the User.id
|
18 |
+
# attribute as a foreign key.
|
19 |
+
class Message(Base):
|
20 |
+
__tablename__ = "messages"
|
21 |
+
pass
|
app/prompts.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import PromptTemplate
|
2 |
+
from typing import List
|
3 |
+
import models
|
4 |
+
|
5 |
+
|
6 |
+
def format_prompt(prompt) -> PromptTemplate:
|
7 |
+
# TODO: format the input prompt by using the model specific instruction template
|
8 |
+
# TODO: return a langchain PromptTemplate
|
9 |
+
return PromptTemplate.from_template(prompt)
|
10 |
+
|
11 |
+
def format_chat_history(messages: List[models.Message]):
|
12 |
+
# TODO: implement format_chat_history to format
|
13 |
+
# the list of Message into a text of chat history.
|
14 |
+
raise NotImplemented
|
15 |
+
|
16 |
+
def format_context(docs: List[str]):
|
17 |
+
# TODO: the output of the DataIndexer.search is a list of text,
|
18 |
+
# so we need to concatenate that list into a text that can fit into
|
19 |
+
# the rag_prompt_formatted. Implement format_context that takes a
|
20 |
+
# like of strings and returns the context as one string.
|
21 |
+
raise NotImplemented
|
22 |
+
|
23 |
+
raw_prompt = "{question}"
|
24 |
+
|
25 |
+
# TODO: Create the history_prompt prompt that will capture the question and the conversation history.
|
26 |
+
# The history_prompt needs a {chat_history} placeholder and a {question} placeholder.
|
27 |
+
history_prompt: str = None
|
28 |
+
|
29 |
+
# TODO: Create the standalone_prompt prompt that will capture the question and the chat history
|
30 |
+
# to generate a standalone question. It needs a {chat_history} placeholder and a {question} placeholder,
|
31 |
+
standalone_prompt: str = None
|
32 |
+
|
33 |
+
# TODO: Create the rag_prompt that will capture the context and the standalone question to generate
|
34 |
+
# a final answer to the question.
|
35 |
+
rag_prompt: str = None
|
36 |
+
|
37 |
+
# TODO: create raw_prompt_formatted by using format_prompt
|
38 |
+
raw_prompt_formatted = format_prompt(raw_prompt)
|
39 |
+
raw_prompt = PromptTemplate.from_template(raw_prompt)
|
40 |
+
|
41 |
+
# TODO: use format_prompt to create history_prompt_formatted
|
42 |
+
history_prompt_formatted: PromptTemplate = None
|
43 |
+
# TODO: use format_prompt to create standalone_prompt_formatted
|
44 |
+
standalone_prompt_formatted: PromptTemplate = None
|
45 |
+
# TODO: use format_prompt to create rag_prompt_formatted
|
46 |
+
rag_prompt_formatted: PromptTemplate = None
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
app/schemas.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic.v1 import BaseModel
|
2 |
+
|
3 |
+
|
4 |
+
class UserQuestion(BaseModel):
|
5 |
+
question: str
|
6 |
+
|
7 |
+
# TODO: create a HistoryInput data model with a chat_history and question attributes.
|
8 |
+
class HistoryInput(BaseModel):
|
9 |
+
pass
|
10 |
+
|
11 |
+
# TODO: let's create a UserRequest data model with a question and username attribute.
|
12 |
+
# This will be used to parse the input request.
|
13 |
+
class UserRequest(BaseModel):
|
14 |
+
username: str
|
15 |
+
|
16 |
+
# TODO: implement MessageBase as a schema mapping from the database model to the
|
17 |
+
# FastAPI data model. Basically MessageBase should have the same attributes as models.Message
|
18 |
+
class MessageBase(BaseModel):
|
19 |
+
pass
|
requirements.txt
CHANGED
@@ -1,2 +1,13 @@
|
|
1 |
fastapi
|
2 |
-
uvicorn[standard]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
langchain
|
4 |
+
langserve
|
5 |
+
sqlalchemy
|
6 |
+
pydantic
|
7 |
+
sse-starlette
|
8 |
+
requests
|
9 |
+
pinecone-client
|
10 |
+
langchain_huggingface
|
11 |
+
langchain_core
|
12 |
+
langchain_community
|
13 |
+
langchain_openai
|