from langchain_core.prompts import PromptTemplate | |
from typing import List | |
import app.models as models | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") | |
def format_prompt(prompt) -> PromptTemplate: | |
# TODO: format the input prompt by using the model specific instruction template | |
# TODO: return a langchain PromptTemplate | |
chat = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
# TODO: apply the chat template to the prompt | |
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
return PromptTemplate.from_template(formatted_prompt) # type: ignore | |
def format_chat_history(messages: List[models.Message]): | |
# TODO: implement format_chat_history to format | |
# the list of Message into a text of chat history. | |
chat_history = "" | |
for message in messages: | |
chat_history += f"{message.type}: {message.message}\n" | |
return chat_history | |
def format_context(docs: List[str]): | |
# TODO: the output of the DataIndexer.search is a list of text, | |
# so we need to concatenate that list into a text that can fit into | |
# the rag_prompt_formatted. Implement format_context that takes a | |
# like of strings and returns the context as one string. | |
raise NotImplemented | |
raw_prompt = "{question}" | |
# TODO: Create the history_prompt prompt that will capture the question and the conversation history. | |
# The history_prompt needs a {chat_history} placeholder and a {question} placeholder. | |
history_prompt: str = """Given the following conversation provide a helpful answer to the follow up question. | |
Chat History: | |
{chat_history} | |
Follow Up question: {question} | |
helpful answer:""" | |
# TODO: Create the standalone_prompt prompt that will capture the question and the chat history | |
# to generate a standalone question. It needs a {chat_history} placeholder and a {question} placeholder, | |
standalone_prompt: str = None | |
# TODO: Create the rag_prompt that will capture the context and the standalone question to generate | |
# a final answer to the question. | |
rag_prompt: str = None | |
# TODO: create raw_prompt_formatted by using format_prompt | |
raw_prompt_formatted = format_prompt(raw_prompt) | |
raw_prompt = PromptTemplate.from_template(raw_prompt) | |
# TODO: use format_prompt to create history_prompt_formatted | |
history_prompt_formatted: PromptTemplate = format_prompt(history_prompt) | |
# TODO: use format_prompt to create standalone_prompt_formatted | |
standalone_prompt_formatted: PromptTemplate = format_prompt(standalone_prompt) | |
# TODO: use format_prompt to create rag_prompt_formatted | |
rag_prompt_formatted: PromptTemplate = format_prompt(rag_prompt) | |