enoreyes commited on
Commit
64f1e0c
·
1 Parent(s): 9d38059

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -3,27 +3,27 @@ import os
3
 
4
  import gradio as gr
5
  import langchain
6
- import weaviate
7
  from langchain.vectorstores import Weaviate
 
8
 
9
  from chain import get_new_chain1
10
 
11
- WEAVIATE_URL = os.environ["WEAVIATE_URL"]
12
-
13
-
14
- def get_weaviate_store():
15
- client = weaviate.Client(
16
- url=WEAVIATE_URL,
17
- additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
18
- )
19
- return Weaviate(client, "Paragraph", "content", attributes=["source"])
20
 
21
 
22
  def set_openai_api_key(api_key, agent):
23
  if api_key:
24
  os.environ["OPENAI_API_KEY"] = api_key
25
- vectorstore = get_weaviate_store()
26
- qa_chain = get_new_chain1(vectorstore)
 
 
 
 
27
  os.environ["OPENAI_API_KEY"] = ""
28
  return qa_chain
29
 
@@ -47,7 +47,7 @@ block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
47
 
48
  with block:
49
  with gr.Row():
50
- gr.Markdown("<h3><center>LangChain AI</center></h3>")
51
 
52
  openai_api_key_textbox = gr.Textbox(
53
  placeholder="Paste your OpenAI API key (sk-...)",
@@ -68,20 +68,20 @@ with block:
68
 
69
  gr.Examples(
70
  examples=[
71
- "What are agents?",
72
- "How do I summarize a long document?",
73
- "What types of memory exist?",
74
  ],
75
  inputs=message,
76
  )
77
 
78
  gr.HTML(
79
  """
80
- This simple application is an implementation of ChatGPT but over an external dataset (in this case, the LangChain documentation)."""
81
  )
82
 
83
  gr.HTML(
84
- "<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
85
  )
86
 
87
  state = gr.State()
 
3
 
4
  import gradio as gr
5
  import langchain
6
+ import pickle
7
  from langchain.vectorstores import Weaviate
8
+ from langchain import OpenAI
9
 
10
  from chain import get_new_chain1
11
 
12
+ def get_faiss_store():
13
+ with open("docs.pkl", 'rb') as f:
14
+ faiss_store = pickle.load(f)
15
+ return faiss_store
 
 
 
 
 
16
 
17
 
18
  def set_openai_api_key(api_key, agent):
19
  if api_key:
20
  os.environ["OPENAI_API_KEY"] = api_key
21
+ vectorstore = get_faiss_store()
22
+
23
+ rephraser_llm = OpenAI(model_name="text-davinci-003", temperature=0)
24
+ final_output_llm = OpenAI(model_name="text-davinci-003", temperature=0, max_tokens=-1)
25
+
26
+ qa_chain = get_new_chain1(vectorstore, rephraser_llm, final_output_llm)
27
  os.environ["OPENAI_API_KEY"] = ""
28
  return qa_chain
29
 
 
47
 
48
  with block:
49
  with gr.Row():
50
+ gr.Markdown("<h3><center>Hugging Face Doc Search</center></h3>")
51
 
52
  openai_api_key_textbox = gr.Textbox(
53
  placeholder="Paste your OpenAI API key (sk-...)",
 
68
 
69
  gr.Examples(
70
  examples=[
71
+ "How do I install transformers?",
72
+ "How do I load pretrained instances with an AutoClass?",
73
+ "How do I fine-tune a pretrained model?",
74
  ],
75
  inputs=message,
76
  )
77
 
78
  gr.HTML(
79
  """
80
+ This simple application uses Langchain, an LLM, and FAISS to do Q&A over the Hugging Face Documentation."""
81
  )
82
 
83
  gr.HTML(
84
+ "<center>Powered by <a href='huggingface.co'>Hugging Face 🤗</a> and <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
85
  )
86
 
87
  state = gr.State()