Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 14,315 Bytes
52409f1 d348068 52409f1 8db36ff 2e463c2 bc6b1cc ce6c967 2e463c2 bc6b1cc 2e463c2 52409f1 b1cd1c8 1ac71fe b1cd1c8 d68759e 52409f1 2401abf 52409f1 d68759e 52409f1 d68759e 52409f1 d68759e 52409f1 b1846f7 d79d8bb 549f7f3 d79d8bb 549f7f3 d79d8bb d68759e d79d8bb 549f7f3 d79d8bb d68759e 52409f1 b4ce27c 6776e8c 52409f1 ccbdb32 6ea7f05 ccbdb32 6ea7f05 ccbdb32 2c75576 6776e8c 52409f1 d68759e 6776e8c 2c75576 52409f1 1a48d31 8db36ff 1a48d31 2e463c2 bc6b1cc 2e463c2 d702bf4 d348068 d702bf4 d348068 8db36ff b1cd1c8 36bd0a9 8db36ff 36bd0a9 52409f1 31ee0fc 52409f1 300b66c 52409f1 8e6b896 d68759e 8e6b896 d68759e 8e6b896 52647ec 52409f1 b4ce27c 300b66c b4ce27c 52409f1 b4ce27c 2401abf b4ce27c 2401abf 52409f1 b4ce27c 19004e8 b4ce27c 52409f1 b4ce27c bcdd585 8db36ff bcdd585 3c641c9 b4ce27c 52409f1 b4ce27c 52409f1 7049bd0 4dcb9ae 52409f1 b1cd1c8 52409f1 a57b805 52409f1 4cda010 b19f57b b1846f7 d617adf 300b66c f7357c0 b1cd1c8 5551feb b1cd1c8 b19f57b b1cd1c8 c44f0c8 b1cd1c8 52409f1 b19f57b 52409f1 b1cd1c8 b1846f7 b1cd1c8 52409f1 ee49e9e 7bf1165 ee49e9e ce6c967 ee49e9e dadaf13 8bc6606 dadaf13 ce6c967 dadaf13 b1cd1c8 bf3be31 ee49e9e ce6c967 b1cd1c8 52409f1 dba4524 b19f57b 52409f1 cee1bed ee49e9e 52409f1 291cd48 52409f1 561a48f 76a528b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
from PIL import Image
from moviepy.editor import VideoFileClip, AudioFileClip
import os
from openai import OpenAI
import subprocess
from pathlib import Path
import uuid
import tempfile
import shlex
import shutil
# Supported models configuration
MODELS = {
"deepseek-ai/DeepSeek-V3": {
"base_url": "https://api.deepseek.com/v1",
"env_key": "DEEPSEEK_API_KEY",
},
"Qwen/Qwen2.5-Coder-32B-Instruct": {
"base_url": "https://api-inference.huggingface.co/v1/",
"env_key": "HF_TOKEN",
},
}
# Initialize client with first available model
client = OpenAI(
base_url=next(iter(MODELS.values()))["base_url"],
api_key=os.environ[next(iter(MODELS.values()))["env_key"]],
)
allowed_medias = [
".png",
".jpg",
".webp",
".jpeg",
".tiff",
".bmp",
".gif",
".svg",
".mp3",
".wav",
".ogg",
".mp4",
".avi",
".mov",
".mkv",
".flv",
".wmv",
".webm",
".mpg",
".mpeg",
".m4v",
".3gp",
".3g2",
".3gpp",
]
def get_files_infos(files):
results = []
for file in files:
file_path = Path(file.name)
info = {}
info["size"] = os.path.getsize(file_path)
# Sanitize filename by replacing spaces with underscores
info["name"] = file_path.name.replace(" ", "_")
file_extension = file_path.suffix
if file_extension in (".mp4", ".avi", ".mkv", ".mov"):
info["type"] = "video"
video = VideoFileClip(file.name)
info["duration"] = video.duration
info["dimensions"] = "{}x{}".format(video.size[0], video.size[1])
if video.audio:
info["type"] = "video/audio"
info["audio_channels"] = video.audio.nchannels
video.close()
elif file_extension in (".mp3", ".wav"):
info["type"] = "audio"
audio = AudioFileClip(file.name)
info["duration"] = audio.duration
info["audio_channels"] = audio.nchannels
audio.close()
elif file_extension in (
".png",
".jpg",
".jpeg",
".tiff",
".bmp",
".gif",
".svg",
):
info["type"] = "image"
img = Image.open(file.name)
info["dimensions"] = "{}x{}".format(img.size[0], img.size[1])
results.append(info)
return results
def get_completion(prompt, files_info, top_p, temperature, model_choice):
# Create table header
files_info_string = "| Type | Name | Dimensions | Duration | Audio Channels |\n"
files_info_string += "|------|------|------------|-----------|--------|\n"
# Add each file as a table row
for file_info in files_info:
dimensions = file_info.get("dimensions", "-")
duration = (
f"{file_info.get('duration', '-')}s" if "duration" in file_info else "-"
)
audio = (
f"{file_info.get('audio_channels', '-')} channels"
if "audio_channels" in file_info
else "-"
)
files_info_string += f"| {file_info['type']} | {file_info['name']} | {dimensions} | {duration} | {audio} |\n"
messages = [
{
"role": "system",
"content": """
You are a very experienced media engineer, controlling a UNIX terminal.
You are an FFMPEG expert with years of experience and multiple contributions to the FFMPEG project.
You are given:
(1) a set of video, audio and/or image assets. Including their name, duration, dimensions and file size
(2) the description of a new video you need to create from the list of assets
Your objective is to generate the SIMPLEST POSSIBLE single ffmpeg command to create the requested video.
Key requirements:
- Use the absolute minimum number of ffmpeg options needed
- Avoid complex filter chains or filter_complex if possible
- Prefer simple concatenation, scaling, and basic filters
- Output exactly ONE command that will be directly pasted into the terminal
- Never output multiple commands chained together
- Output the command in a single line (no line breaks or multiple lines)
- If the user asks for waveform visualization make sure to set the mode to `line` with and the use the full width of the video. Also concatenate the audio into a single channel.
- For image sequences: Use -framerate and pattern matching (like 'img%d.jpg') when possible, falling back to individual image processing with -loop 1 and appropriate filters only when necessary.
- When showing file operations or commands, always use explicit paths and filenames without wildcards - avoid using asterisk (*) or glob patterns. Instead, use specific numbered sequences (like %d), explicit file lists, or show the full filename.
Remember: Simpler is better. Only use advanced ffmpeg features if absolutely necessary for the requested output.
""",
},
{
"role": "user",
"content": f"""Always output the media as video/mp4 and output file with "output.mp4". Provide only the shell command without any explanations.
The current assets and objective follow. Reply with the FFMPEG command:
AVAILABLE ASSETS LIST:
{files_info_string}
OBJECTIVE: {prompt} and output at "output.mp4"
YOUR FFMPEG COMMAND:
""",
},
]
try:
# Print the complete prompt
print("\n=== COMPLETE PROMPT ===")
for msg in messages:
print(f"\n[{msg['role'].upper()}]:")
print(msg["content"])
print("=====================\n")
if model_choice not in MODELS:
raise ValueError(f"Model {model_choice} is not supported")
model_config = MODELS[model_choice]
client.base_url = model_config["base_url"]
client.api_key = os.environ[model_config["env_key"]]
model = "deepseek-chat" if "deepseek" in model_choice.lower() else model_choice
completion = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=2048,
)
content = completion.choices[0].message.content
# Extract command from code block if present
if "```" in content:
# Find content between ```sh or ```bash and the next ```
import re
command = re.search(r"```(?:sh|bash)?\n(.*?)\n```", content, re.DOTALL)
if command:
command = command.group(1).strip()
else:
command = content.replace("\n", "")
else:
command = content.replace("\n", "")
# remove output.mp4 with the actual output file path
command = command.replace("output.mp4", "")
return command
except Exception as e:
raise Exception("API Error")
def update(
files,
prompt,
top_p=1,
temperature=1,
model_choice="Qwen/Qwen2.5-Coder-32B-Instruct",
):
if prompt == "":
raise gr.Error("Please enter a prompt.")
files_info = get_files_infos(files)
# disable this if you're running the app locally or on your own server
for file_info in files_info:
if file_info["type"] == "video":
if file_info["duration"] > 120:
raise gr.Error(
"Please make sure all videos are less than 2 minute long."
)
if file_info["size"] > 100000000:
raise gr.Error("Please make sure all files are less than 100MB in size.")
attempts = 0
while attempts < 2:
print("ATTEMPT", attempts)
try:
command_string = get_completion(
prompt, files_info, top_p, temperature, model_choice
)
print(
f"""///PROMTP {prompt} \n\n/// START OF COMMAND ///:\n\n{command_string}\n\n/// END OF COMMAND ///\n\n"""
)
# split command string into list of arguments
args = shlex.split(command_string)
if args[0] != "ffmpeg":
raise Exception("Command does not start with ffmpeg")
temp_dir = tempfile.mkdtemp()
# copy files to temp dir with sanitized names
for file in files:
file_path = Path(file.name)
sanitized_name = file_path.name.replace(" ", "_")
shutil.copy(file_path, Path(temp_dir) / sanitized_name)
# test if ffmpeg command is valid dry run
ffmpg_dry_run = subprocess.run(
args + ["-f", "null", "-"],
stderr=subprocess.PIPE,
text=True,
cwd=temp_dir,
)
if ffmpg_dry_run.returncode == 0:
print("Command is valid.")
else:
print("Command is not valid. Error output:")
print(ffmpg_dry_run.stderr)
raise Exception(
"FFMPEG generated command is not valid. Please try something else."
)
output_file_name = f"output_{uuid.uuid4()}.mp4"
output_file_path = str((Path(temp_dir) / output_file_name).resolve())
final_command = args + ["-y", output_file_path]
print(
f"\n=== EXECUTING FFMPEG COMMAND ===\nffmpeg {' '.join(final_command[1:])}\n"
)
subprocess.run(final_command, cwd=temp_dir)
generated_command = f"### Generated Command\n```bash\nffmpeg {' '.join(args[1:])} -y output.mp4\n```"
return output_file_path, gr.update(value=generated_command)
except Exception as e:
attempts += 1
if attempts >= 2:
print("FROM UPDATE", e)
raise gr.Error(e)
with gr.Blocks() as demo:
gr.Markdown(
"""
# π AI Video Composer
Compose new videos from your assets using natural language. Add video, image and audio assets and let [Qwen2.5-Coder](https://huggingface.co./Qwen/Qwen2.5-Coder-32B-Instruct) or [DeepSeek-V3](https://huggingface.co./deepseek-ai/DeepSeek-V3-Base) generate a new video for you (using FFMPEG).
""",
elem_id="header",
)
with gr.Row():
with gr.Column():
user_files = gr.File(
file_count="multiple",
label="Media files",
file_types=allowed_medias,
)
user_prompt = gr.Textbox(
placeholder="eg: Remove the 3 first seconds of the video",
label="Instructions",
)
btn = gr.Button("Run")
with gr.Accordion("Parameters", open=False):
model_choice = gr.Radio(
choices=list(MODELS.keys()),
value=list(MODELS.keys())[0],
label="Model",
)
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.7,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
temperature = gr.Slider(
minimum=-0,
maximum=5.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
generated_video = gr.Video(
interactive=False, label="Generated Video", include_audio=True
)
generated_command = gr.Markdown()
btn.click(
fn=update,
inputs=[user_files, user_prompt, top_p, temperature, model_choice],
outputs=[generated_video, generated_command],
)
with gr.Row():
gr.Examples(
examples=[
[
["./examples/ai_talk.wav", "./examples/bg-image.png"],
"Use the image as the background with a waveform visualization for the audio positioned in center of the video.",
0.7,
0.1,
(
list(MODELS.keys())[1]
if len(MODELS) > 1
else list(MODELS.keys())[0]
),
],
[
["./examples/ai_talk.wav", "./examples/bg-image.png"],
"Use the image as the background with a waveform visualization for the audio positioned in center of the video. Make sure the waveform has a max height of 250 pixels.",
0.7,
0.1,
list(MODELS.keys())[0],
],
[
[
"./examples/cat1.jpeg",
"./examples/cat2.jpeg",
"./examples/cat3.jpeg",
"./examples/cat4.jpeg",
"./examples/cat5.jpeg",
"./examples/cat6.jpeg",
"./examples/heat-wave.mp3",
],
"Create a 3x2 grid of the cat images with the audio as background music. Make the video duration match the audio duration.",
0.7,
0.1,
(
list(MODELS.keys())[1]
if len(MODELS) > 1
else list(MODELS.keys())[0]
),
],
],
inputs=[user_files, user_prompt, top_p, temperature, model_choice],
outputs=[generated_video, generated_command],
fn=update,
run_on_click=True,
cache_examples=False,
)
with gr.Row():
gr.Markdown(
"""
If you have idea to improve this please open a PR:
[![Open a Pull Request](https://huggingface.co./datasets/huggingface/badges/raw/main/open-a-pr-lg-light.svg)](https://huggingface.co./spaces/huggingface-projects/video-composer-gpt4/discussions)
""",
)
demo.queue(default_concurrency_limit=200)
demo.launch(show_api=False, ssr_mode=False)
|