Spaces:
Running
Running
File size: 16,417 Bytes
f0798cc 3c68453 f0798cc 3c68453 7ebdef9 f0798cc 7ebdef9 48537c4 5b8c5fb 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 7ebdef9 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 7ebdef9 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 48537c4 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 3c68453 f0798cc 6b8138e f0798cc e515aa4 f0798cc 3c68453 6b8138e f0798cc a3de190 f0798cc a3de190 3c68453 a3de190 3c68453 fac3d77 3c68453 a3de190 3c68453 f0798cc 3c68453 fac3d77 f0798cc fac3d77 f0798cc 3c68453 f0798cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import openai
import os
import pdfplumber
from langchain.chains.mapreduce import MapReduceChain
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import UnstructuredFileLoader
from langchain.prompts import PromptTemplate
import logging
import json
from typing import List
import mimetypes
import validators
import requests
import tempfile
from langchain.chains import create_extraction_chain
from GoogleNews import GoogleNews
import pandas as pd
import requests
import gradio as gr
import re
from langchain.document_loaders import WebBaseLoader
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from transformers import pipeline
import plotly.express as px
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.chains.llm import LLMChain
import yfinance as yf
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize
from openai import OpenAI
class KeyValueExtractor:
def __init__(self):
"""
Initialize the ContractSummarizer object.
Parameters:
pdf_file_path (str): The path to the input PDF file.
"""
self.model = "facebook/bart-large-mnli"
self.client = OpenAI()
def get_url(self,keyword):
return f"https://finance.yahoo.com/quote/{keyword}?p={keyword}"
def get_each_link_summary(self,url):
loader = WebBaseLoader(url)
docs = loader.load()
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=3000, chunk_overlap=200
)
# Split the documents into chunks
split_docs = text_splitter.split_documents(docs)
# Prepare the prompt template for summarization
prompt_template = """The give text is Finance Stock Details for one company i want to get values for
Previous Close : [value]
Open : [value]
Bid : [value]
Ask : [value]
Day's Range : [value]
52 Week Range : [value]
Volume : [value]
Avg. Volume : [value]
Market Cap : [value]
Beta (5Y Monthly) : [value]
PE Ratio (TTM) : [value]
EPS (TTM) : [value]
Earnings Date : [value]
Forward Dividend & Yield : [value]
Ex-Dividend Date : [value]
1y Target Est : [value]
these details form that and Write a abractive summary about those details:
Given Text: {text}
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Prepare the template for refining the summary with additional context
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
)
refine_prompt = PromptTemplate.from_template(refine_template)
# Load the summarization chain using the ChatOpenAI language model
chain = load_summarize_chain(
llm = ChatOpenAI(temperature=0),
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text",
)
# Generate the refined summary using the loaded summarization chain
result = chain({"input_documents": split_docs}, return_only_outputs=True)
print(result["output_text"])
return result["output_text"]
def one_day_summary(self,content) -> None:
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = self.client.chat.completions.create(
model = "gpt-3.5-turbo",
messages = conversation,
max_tokens=1000,
temperature=0
)
response = chat_completion.choices[0].message.content
return response
# # Use OpenAI's Completion API to analyze the text and extract key-value pairs
# response = openai.Completion.create(
# engine="text-davinci-003", # You can choose a different engine as well
# temperature = 0,
# prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
# max_tokens=1000 # You can adjust the length of the response
# )
# # Extract and return the chatbot's reply
# result = response['choices'][0]['text'].strip()
# print(result)
# return result
def extract_key_value_pair(self,content) -> None:
"""
Extract key-value pairs from the refined summary.
Prints the extracted key-value pairs.
"""
try:
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```."}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = self.client.chat.completions.create(
model = "gpt-3.5-turbo",
messages = conversation,
max_tokens=1000,
temperature=0
)
response = chat_completion.choices[0].message.content
return response
# # Use OpenAI's Completion API to analyze the text and extract key-value pairs
# response = openai.Completion.create(
# engine="text-davinci-003", # You can choose a different engine as well
# temperature = 0,
# prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
# max_tokens=1000 # You can adjust the length of the response
# )
# # Extract and return the chatbot's reply
# result = response['choices'][0]['text'].strip()
# return result
except Exception as e:
# If an error occurs during the key-value extraction process, log the error
logging.error(f"Error while extracting key-value pairs: {e}")
print("Error:", e)
def analyze_sentiment_for_graph(self, text):
pipe = pipeline("zero-shot-classification", model=self.model)
label=["Positive", "Negative", "Neutral"]
result = pipe(text, label)
sentiment_scores = {
result['labels'][0]: result['scores'][0],
result['labels'][1]: result['scores'][1],
result['labels'][2]: result['scores'][2]
}
return sentiment_scores
def display_graph(self,text):
sentiment_scores = self.analyze_sentiment_for_graph(text)
labels = sentiment_scores.keys()
scores = sentiment_scores.values()
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
fig.update_layout(title="Sentiment Analysis",width=800)
formatted_pairs = []
for key, value in sentiment_scores.items():
formatted_value = round(value, 2) # Round the value to two decimal places
formatted_pairs.append(f"{key} : {formatted_value}")
result_string = '\t'.join(formatted_pairs)
return fig
def get_finance_data(self,symbol):
# Define the stock symbol and date range
start_date = '2022-08-19'
end_date = '2023-08-19'
# Fetch historical OHLC data using yfinance
data = yf.download(symbol, start=start_date, end=end_date)
# Select only the OHLC columns
ohlc_data = data[['Open', 'High', 'Low', 'Close']]
csv_path = "ohlc_data.csv"
# Save the OHLC data to a CSV file
ohlc_data.to_csv(csv_path)
return csv_path
def csv_to_dataframe(self,csv_path):
# Replace 'your_file.csv' with the actual path to your CSV file
csv_file_path = csv_path
# Read the CSV file into a DataFrame
df = pd.read_csv(csv_file_path)
# Now you can work with the 'df' DataFrame
return df # Display the first few rows of the DataFrame
def save_dataframe_in_text_file(self,df):
output_file_path = 'output.txt'
# Convert the DataFrame to a text file
df.to_csv(output_file_path, sep='\t', index=False)
return output_file_path
def csv_loader(self,output_file_path):
loader = UnstructuredFileLoader(output_file_path, strategy="fast")
docs = loader.load()
return docs
def document_text_spilliter(self,docs):
"""
Split documents into chunks for efficient processing.
Returns:
List[str]: List of split document chunks.
"""
# Initialize the text splitter with specified chunk size and overlap
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1000, chunk_overlap=200
)
# Split the documents into chunks
split_docs = text_splitter.split_documents(docs)
# Return the list of split document chunks
return split_docs
def change_bullet_points(self,text):
nltk.download('punkt') # Download the sentence tokenizer data (only need to run this once)
# Example passage
passage = text
# Tokenize the passage into sentences
sentences = sent_tokenize(passage)
bullet_string = ""
# Print the extracted sentences
for sentence in sentences:
bullet_string+="* "+sentence+"\n"
return bullet_string
def one_year_summary(self,keyword):
csv_path = self.get_finance_data(keyword)
df = self.csv_to_dataframe(csv_path)
output_file_path = self.save_dataframe_in_text_file(df)
docs = self.csv_loader(output_file_path)
split_docs = self.document_text_spilliter(docs)
prompt_template = """Analyze the Financial Details and Write a abractive quick short summary how the company perform up and down,Bullish/Bearish of the following:
{text}
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Prepare the template for refining the summary with additional context
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
"10 line summary is enough"
)
refine_prompt = PromptTemplate.from_template(refine_template)
# Load the summarization chain using the ChatOpenAI language model
chain = load_summarize_chain(
llm = ChatOpenAI(temperature=0),
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text",
)
# Generate the refined summary using the loaded summarization chain
result = chain({"input_documents": split_docs}, return_only_outputs=True)
one_year_perfomance_summary = self.change_bullet_points(result["output_text"])
# Return the refined summary
return one_year_perfomance_summary
def main(self,keyword):
clean_url = self.get_url(keyword)
link_summary = self.get_each_link_summary(clean_url)
clean_summary = self.one_day_summary(link_summary)
key_value = self.extract_key_value_pair(clean_summary)
return clean_summary, key_value
def company_names(self,input_text):
words = input_text.split("-")
return words[1]
def gradio_interface(self):
with gr.Blocks(css="style.css",theme= 'karthikeyan-adople/hudsonhayes-gray') as app:
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center">
<img src="file=logo.png" height="110px" width="280px"></h1></center>
<br><h1 style="color:#fff"> Finance Tool for Investors </h1></center>""")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150, ):
input_news = gr.Textbox(label="Company Name")
with gr.Accordion("List_of_Companies", open = False):
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150 ):
gr.Examples(
[["Apple Inc. - AAPL"], ["Microsoft Corporation - MSFT"],["Amazon.com Inc. - AMZN"],["Facebook Inc. - FB"],["Tesla Inc. - TSLA"]],
[input_news],
input_news,
fn=self.company_names,
cache_examples=True,
)
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
analyse = gr.Button("Analyse")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.50, min_width=150):
result_summary = gr.Textbox(label="Summary For Last Day Perfomance", lines = 12)
with gr.Column(scale=0.50, min_width=150):
key_value_pair_result = gr.Textbox(label="Discussed Topics", lines = 12)
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=0):
plot_for_day =gr.Plot(label="Sentiment for Last Day", size=(500, 600))
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
analyse_sentiment = gr.Button("Analyse Sentiment For Last Day")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150, ):
one_year_summary = gr.Textbox(label="Summary For One Year Perfomance",lines = 12)
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
one_year = gr.Button("Analyse One Year Summary")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=0):
plot_for_year =gr.Plot(label="Sentiment for One Year", size=(500, 600))
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
analyse_sentiment_for_year = gr.Button("Analyse Sentiment For One Year")
analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
analyse_sentiment.click(self.display_graph,result_summary,[plot_for_day])
one_year.click(self.one_year_summary,input_news,one_year_summary)
analyse_sentiment_for_year.click(self.display_graph,one_year_summary,[plot_for_year])
app.launch(debug=True)
if __name__ == "__main__":
text_process = KeyValueExtractor()
text_process.gradio_interface() |