Spaces:
Running
Running
File size: 13,263 Bytes
f0798cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import openai
import os
import pdfplumber
from langchain.chains.mapreduce import MapReduceChain
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import UnstructuredFileLoader
from langchain.prompts import PromptTemplate
import logging
import json
from typing import List
import mimetypes
import validators
import requests
import tempfile
from bs4 import BeautifulSoup
from langchain.chains import create_extraction_chain
from GoogleNews import GoogleNews
import pandas as pd
import gradio as gr
import re
from langchain.document_loaders import WebBaseLoader
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from transformers import pipeline
import plotly.express as px
class KeyValueExtractor:
def __init__(self):
"""
Initialize the ContractSummarizer object.
Parameters:
pdf_file_path (str): The path to the input PDF file.
"""
self.model = "facebook/bart-large-mnli"
def get_news(self,keyword):
googlenews = GoogleNews(lang='en', region='US', period='1d', encode='utf-8')
googlenews.clear()
googlenews.search(keyword)
googlenews.get_page(2)
news_result = googlenews.result(sort=True)
news_data_df = pd.DataFrame.from_dict(news_result)
news_data_df.info()
# Display header of dataframe.
news_data_df.head()
tot_news_link = []
for index, headers in news_data_df.iterrows():
news_link = str(headers['link'])
tot_news_link.append(news_link)
return tot_news_link
def url_format(self,urls):
tot_url_links = []
for url_text in urls:
# Define a regex pattern to match URLs starting with 'http' or 'https'
pattern = r'(https?://[^\s]+)'
# Search for the URL in the text using the regex pattern
match = re.search(pattern, url_text)
if match:
extracted_url = match.group(1)
tot_url_links.append(extracted_url)
else:
print("No URL found in the given text.")
return tot_url_links
def clear_error_ulr(self,urls):
error_url = []
for url in urls:
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
# raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
print(f"Error fetching {url}:")
error_url.append(url)
continue
cleaned_list_url = [item for item in urls if item not in error_url]
return cleaned_list_url
def get_each_link_summary(self,urls):
each_link_summary = ""
for url in urls:
loader = WebBaseLoader(url)
docs = loader.load()
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=3000, chunk_overlap=200
)
# Split the documents into chunks
split_docs = text_splitter.split_documents(docs)
# Prepare the prompt template for summarization
prompt_template = """Write a concise summary of the following:
{text}
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Prepare the template for refining the summary with additional context
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
)
refine_prompt = PromptTemplate.from_template(refine_template)
# Load the summarization chain using the ChatOpenAI language model
chain = load_summarize_chain(
llm = ChatOpenAI(temperature=0),
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text",
)
# Generate the refined summary using the loaded summarization chain
result = chain({"input_documents": split_docs}, return_only_outputs=True)
print(result["output_text"])
# Return the refined summary
each_link_summary = each_link_summary + result["output_text"]
return each_link_summary
def save_text_to_file(self,each_link_summary) -> str:
"""
Load the text from the saved file and split it into documents.
Returns:
List[str]: List of document texts.
"""
# Get the path to the text file where the extracted text will be saved
file_path = "extracted_text.txt"
try:
with open(file_path, 'w') as file:
# Write the extracted text into the text file
file.write(each_link_summary)
# Return the file path of the saved text file
return file_path
except IOError as e:
# If an IOError occurs during the file saving process, log the error
logging.error(f"Error while saving text to file: {e}")
def document_loader(self,file_path) -> List[str]:
"""
Load the text from the saved file and split it into documents.
Returns:
List[str]: List of document texts.
"""
# Initialize the UnstructuredFileLoader
loader = UnstructuredFileLoader(file_path, strategy="fast")
# Load the documents from the file
docs = loader.load()
# Return the list of loaded document texts
return docs
def document_text_spilliter(self,docs) -> List[str]:
"""
Split documents into chunks for efficient processing.
Returns:
List[str]: List of split document chunks.
"""
# Initialize the text splitter with specified chunk size and overlap
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=3000, chunk_overlap=200
)
# Split the documents into chunks
split_docs = text_splitter.split_documents(docs)
# Return the list of split document chunks
return split_docs
def extract_key_value_pair(self,content) -> None:
"""
Extract key-value pairs from the refined summary.
Prints the extracted key-value pairs.
"""
try:
# Use OpenAI's Completion API to analyze the text and extract key-value pairs
response = openai.Completion.create(
engine="text-davinci-003", # You can choose a different engine as well
temperature = 0,
prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
max_tokens=1000 # You can adjust the length of the response
)
# Extract and return the chatbot's reply
result = response['choices'][0]['text'].strip()
return result
except Exception as e:
# If an error occurs during the key-value extraction process, log the error
logging.error(f"Error while extracting key-value pairs: {e}")
print("Error:", e)
def refine_summary(self,split_docs) -> str:
"""
Refine the summary using the provided context.
Returns:
str: Refined summary.
"""
# Prepare the prompt template for summarization
prompt_template = """Write a detalied broad abractive summary of the following:
{text}
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Prepare the template for refining the summary with additional context
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
)
refine_prompt = PromptTemplate.from_template(refine_template)
# Load the summarization chain using the ChatOpenAI language model
chain = load_summarize_chain(
llm = ChatOpenAI(temperature=0),
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text",
)
# Generate the refined summary using the loaded summarization chain
result = chain({"input_documents": split_docs}, return_only_outputs=True)
key_value_pair = self.extract_key_value_pair(result["output_text"])
# Return the refined summary
return result["output_text"],key_value_pair
def analyze_sentiment_for_graph(self, text):
pipe = pipeline("zero-shot-classification", model=self.model)
label=["Positive", "Negative", "Neutral"]
result = pipe(text, label)
sentiment_scores = {
result['labels'][0]: result['scores'][0],
result['labels'][1]: result['scores'][1],
result['labels'][2]: result['scores'][2]
}
return sentiment_scores
def display_graph(self,text):
sentiment_scores = self.analyze_sentiment_for_graph(text)
labels = sentiment_scores.keys()
scores = sentiment_scores.values()
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
fig.update_layout(title="Sentiment Analysis",width=800)
formatted_pairs = []
for key, value in sentiment_scores.items():
formatted_value = round(value, 2) # Round the value to two decimal places
formatted_pairs.append(f"{key} : {formatted_value}")
result_string = '\t'.join(formatted_pairs)
return fig
def main(self,keyword):
urls = self.get_news(keyword)
tot_urls = self.url_format(urls)
clean_url = self.clear_error_ulr(tot_urls)
each_link_summary = self.get_each_link_summary(clean_url)
file_path = self.save_text_to_file(each_link_summary)
docs = self.document_loader(file_path)
split_docs = self.document_text_spilliter(docs)
result = self.refine_summary(split_docs)
return result
def gradio_interface(self):
with gr.Blocks(css="style.css",theme= 'karthikeyan-adople/hudsonhayes-gray') as app:
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center">
<img src="file=logo.png" height="110px" width="280px"></h1></center>
<br><h1 style="color:#fff">summarizer</h1></center>""")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150, ):
input_news = gr.Textbox(label="NEWS")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
analyse = gr.Button("Analyse")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.50, min_width=150):
result_summary = gr.Textbox(label="Summary")
with gr.Column(scale=0.50, min_width=150):
key_value_pair_result = gr.Textbox(label="Key Value Pair")
with gr.Row(elem_id="col-container"):
with gr.Column(scale=0.70, min_width=0):
plot =gr.Plot(label="Customer", size=(500, 600))
with gr.Row(elem_id="col-container"):
with gr.Column(scale=1.0, min_width=150):
analyse_sentiment = gr.Button("Analyse")
analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
analyse_sentiment.click(self.display_graph,result_summary,[plot])
app.launch(debug=True)
if __name__ == "__main__":
text_process = KeyValueExtractor()
text_process.gradio_interface() |