File size: 16,703 Bytes
0d0a4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import requests
from bs4 import BeautifulSoup
import pandas as pd
import re
import pysbd

###############################################
# Functions from Code 1 (collapsible approach)#
###############################################

def extract_result(sentence):
    match = re.search(r"(Διαγραφή|Παραμονή|Άλλο αποτέλεσμα|διαγραφή|Συγχώνευση|Διατήρηση)", sentence, flags=re.IGNORECASE)
    delete_cases = [
        'Μη εγκυκλοπαιδικό', 'Πράγματι δεν φαίνεται πως το λήμμα είναι εγκυκλοπαιδικό',
        'Δεν διαπιστώθηκε εγκυκλοπαιδικότητα', 'Μη εγκυκλοπαιδικό λήμμα',
        'Το λήμμα κρίθηκε ότι είναι καταλληλότερο για κάποιο άλλο αδελφό εγχείρημα, παρά για την Βικιπαίδεια + ατεκμηρίωτο.',
        'Δεν υπάρχουν επαρκείς αναφορές για την βιογραφούμενη'
    ]
    if match:
        outcome = match.group(1).strip()
    elif sentence in delete_cases:
        outcome = 'Διαγραφή'
    else:
        outcome = 'Δεν υπάρχει συναίνεση'
    return normalize_outcome(outcome)

def normalize_outcome(o):
    lowered = o.lower()
    if 'διαγρ' in lowered:  # covers 'διαγραφή'
        return 'Διαγραφή'
    elif 'διατήρη' in lowered or 'παραμονή' in lowered:
        return 'Διατήρηση'
    elif 'συγχών' in lowered:
        return 'συγχώνευση'
    else:
        # Covers 'Άλλο αποτέλεσμα' and unknown cases
        return 'Δεν υπάρχει συναίνεση'

def extract_discussions_from_page_collapsible(url):
    response = requests.get(url)
    if response.status_code != 200:
        return pd.DataFrame(columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

    soup = BeautifulSoup(response.content, 'html.parser')
    discussion_sections = soup.find_all('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
    titles = []
    for section in discussion_sections:
        try:
            h2_tag = section.find('h2')
            if not h2_tag:
                continue
            title_link = h2_tag.find('a')
            title = title_link.text.strip() if title_link else h2_tag.get_text(strip=True)
            titles.append(title)
        except:
            pass

    discussion_tables = soup.find_all('table')
    if not discussion_tables:
        return pd.DataFrame(columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

    data = []
    for idx, table in enumerate(discussion_tables):
        try:
            decision_row = table.find('tr')
            decision_cell = decision_row.find('th') if decision_row else None
            if decision_cell:
                result_match = re.search(
                    r"Η συζήτηση τελείωσε, το αποτέλεσμα ήταν: <i>(.*?)</i>", str(decision_cell), re.DOTALL
                )
                result_sentence = result_match.group(1).strip() if result_match else "No result found"
            else:
                result_sentence = "No result found"

            discussion_row = decision_row.find_next_sibling('tr') if decision_row else None
            discussion_cell = discussion_row.find('td', class_='plainlinks') if discussion_row else None
            discussion_content = discussion_cell.get_text(separator="\n") if discussion_cell else "No discussion content found"
            discussion_content = discussion_content.split('\nμητρώο\n)\n\n\n\n\n')[-1].replace('\n','')

            title = titles[idx] if idx < len(titles) else f"Discussion {idx + 1}"
            data.append({
                "title": title,
                "discussion": discussion_content,
                "result_sentence": result_sentence,
                "result": extract_result(result_sentence),
                "text_url": url
            })
        except:
            pass

    return pd.DataFrame(data, columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

###########################################
# Functions from Code 2 (non-collapsible) #
###########################################

def extract_discussions_from_page_non_collapsible(url):
    response = requests.get(url)
    if response.status_code != 200:
        return pd.DataFrame(columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

    soup = BeautifulSoup(response.content, 'html.parser')
    discussion_sections = soup.find_all('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
    titles = []
    for section in discussion_sections:
        try:
            h2_tag = section.find('h2')
            if not h2_tag:
                continue
            title_link = h2_tag.find('a')
            title = title_link.text.strip() if title_link else h2_tag.get_text(strip=True)
            titles.append(title)
        except:
            pass

    discussion_tables = soup.find_all('table', class_='pagediscussion')
    if not discussion_tables:
        return pd.DataFrame(columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

    data = []
    for idx, table in enumerate(discussion_tables):
        try:
            decision_row = table.find('tr')
            decision_cell = decision_row.find('th') if decision_row else None
            if decision_cell:
                result_match = re.search(
                    r"Η συζήτηση τελείωσε, το αποτέλεσμα ήταν: <i>(.*?)</i>", str(decision_cell), re.DOTALL
                )
                result_sentence = result_match.group(1).strip() if result_match else "No result found"
            else:
                result_sentence = "No result found"

            discussion_row = decision_row.find_next_sibling('tr') if decision_row else None
            discussion_cell = discussion_row.find('td', class_='plainlinks') if discussion_row else None
            discussion_content = discussion_cell.get_text(separator="\n") if discussion_cell else "No discussion content found"
            discussion_content = discussion_content.split('\nμητρώο\n)\n\n\n\n\n')[-1].replace('\n','')

            title = titles[idx] if idx < len(titles) else f"Discussion {idx + 1}"
            data.append({
                "title": title,
                "discussion": discussion_content,
                "result_sentence": result_sentence,
                "result": extract_result(result_sentence),
                "text_url": url
            })
        except:
            pass

    return pd.DataFrame(data, columns=['title', 'discussion', 'result_sentence', 'result', 'text_url'])

###########################################
# Title-based extraction with fallback    #
###########################################

def html_to_plaintext(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup.find_all(['p', 'li', 'dd', 'dl', 'ul']):
        tag.insert_before('\n')
        tag.insert_after('\n')
    for br in soup.find_all('br'):
        br.replace_with('\n')
    text = soup.get_text(separator=' ', strip=True)
    text = '\n'.join([line.strip() for line in text.splitlines() if line.strip()])
    return text

def split_text_into_sentences(text):
    seg = pysbd.Segmenter(language="el", clean=False)
    sentences = seg.segment(text)
    return ' '.join(sentences)

def clean_discussion_text(text):
    return text.strip()

def extract_outcome_from_text(text):
    outcomes = ['Διαγραφή', 'Παραμονή', 'διαγραφή', 'Συγχώνευση', 'Διατήρηση', 'Άλλο αποτέλεσμα']
    lowered = text.lower()
    found_outcome = None
    for outcome in outcomes:
        if outcome.lower() in lowered:
            found_outcome = outcome
            break
    if not found_outcome:
        found_outcome = 'Δεν υπάρχει συναίνεση'
    return normalize_outcome(found_outcome)

def extract_discussion_section(soup, title):
    t = title.replace(' ', '_')
    h2_tag = soup.find('h2', id=t)
    if not h2_tag:
        return '', '', ''

    heading_div = h2_tag.find_parent('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
    if not heading_div:
        return '', '', ''

    next_heading_div = heading_div.find_next('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')

    html_fragments = []
    current = heading_div.next_sibling
    while current and current != next_heading_div:
        if hasattr(current, 'prettify'):
            html_fragments.append(current.prettify())
        else:
            html_fragments.append(str(current))
        current = current.next_sibling

    discussion_html = ''.join(html_fragments).strip()
    if not discussion_html:
        return '', '', ''

    sub_soup = BeautifulSoup(discussion_html, 'html.parser')
    discussion_tags = sub_soup.find_all(['p', 'ul', 'dl'])

    if not discussion_tags:
        return '', '', ''

    cleaned_parts = []
    for tag in discussion_tags:
        for unwanted in tag.find_all(['span', 'img', 'a', 'div', 'table'], recursive=True):
            unwanted.decompose()
        text = tag.get_text(separator=' ', strip=True)
        if text:
            cleaned_parts.append(text)

    cleaned_discussion = ' '.join(cleaned_parts)
    label = extract_outcome_from_text(cleaned_discussion)

    return discussion_html, label, cleaned_discussion

def extract_fallback_discussion(url, title):
    response = requests.get(url)
    if response.status_code != 200:
        return '', None

    soup = BeautifulSoup(response.text, 'html.parser')
    discussion_tables = soup.find_all('table')
    if not discussion_tables:
        return '', None
    for table in discussion_tables:
        table_text = table.get_text(separator='\n', strip=True)
        if title in table_text:
            decision_row = table.find('tr')
            decision_cell = decision_row.find('th') if decision_row else None
            if decision_cell:
                result_match = re.search(r"Η συζήτηση τελείωσε, το αποτέλεσμα ήταν: <i>(.*?)</i>", str(decision_cell), re.DOTALL)
                result_sentence = result_match.group(1).strip() if result_match else "No result found"
            else:
                result_sentence = "No result found"

            discussion_row = decision_row.find_next_sibling('tr') if decision_row else None
            discussion_cell = discussion_row.find('td', class_='plainlinks') if discussion_row else None
            discussion_content = ''
            if discussion_cell:
                discussion_content = discussion_cell.get_text(separator=' ', strip=True)

            if discussion_content:
                outcome = extract_result(result_sentence)
                return discussion_content, outcome

    return '', None

def extract_div_from_title_with_fallback(title, url ='', date=''):
    if not date:
        raise ValueError("For 'title' mode, 'date' must be provided in the format: mm/yyyy")

    month_map = {
        '01': 'Ιανουαρίου', '02': 'Φεβρουαρίου', '03': 'Μαρτίου', '04': 'Απριλίου', '05': 'Μαΐου', '06': 'Ιουνίου',
        '07': 'Ιουλίου', '08': 'Αυγούστου', '09': 'Σεπτεμβρίου', '10': 'Οκτωβρίου', '11': 'Νοεμβρίου', '12': 'Δεκεμβρίου'
    }
    if '_' in date and date.split('_')[0] in month_map.values():
        # If date is already in 'Month_Year' format
        date_str = date
    else:
        # Try to parse date in 'mm/yyyy' format
        match = re.match(r'(\d{2})/(\d{4})', date)
        if not match:
            raise ValueError("Date must be in the format mm/yyyy or Month_Year")
        mm, yyyy = match.groups()
        if mm not in month_map:
            raise ValueError(f"Invalid month: {mm}")
        
        date_str = f"{month_map[mm]}_{yyyy}"  # Convert to 'Month_Year' format
    base_url = 'https://el.wikipedia.org/wiki/Βικιπαίδεια:Σελίδες_για_διαγραφή'
    url = f"{base_url}/{date_str}#{title}"

    response = requests.get(url)
    if response.status_code != 200:
        return pd.DataFrame(columns=['title', 'discussion_url', 'discussion', 'outcome'])

    soup = BeautifulSoup(response.content, 'html.parser')
    discussion_html, label, cleaned_discussion = extract_discussion_section(soup, title)

    text_url = f"{base_url}/{date_str}"
    discussion_url = text_url + '#' + title

    cleaned_discussion = html_to_plaintext(cleaned_discussion)
    cleaned_discussion = split_text_into_sentences(cleaned_discussion)
    cleaned_discussion = clean_discussion_text(cleaned_discussion)

    if not cleaned_discussion.strip():
        fallback_url = f"{base_url}/{date_str}"
        discussion_content, outcome = extract_fallback_discussion(fallback_url, title)
        cleaned_discussion = html_to_plaintext(discussion_content)
        cleaned_discussion = split_text_into_sentences(cleaned_discussion)
        cleaned_discussion = clean_discussion_text(cleaned_discussion)
        if outcome:
            label = normalize_outcome(outcome)

    df = pd.DataFrame([[title, discussion_url, cleaned_discussion, label]],
                      columns=['title', 'discussion_url', 'discussion', 'outcome'])
    return df

def normalize_outcome(o):
    lowered = o.lower()
    if 'διαγρ' in lowered:
        return 'Διαγραφή'
    elif 'διατήρη' in lowered or 'παραμονή' in lowered:
        return 'Διατήρηση'
    elif 'συγχών' in lowered:
        return 'συγχώνευση'
    else:
        return 'Δεν υπάρχει συναίνεση'

###################################
# The collect_gr() function       #
###################################

def collect_gr(mode='url', title='', url = '', years=[]):
    if mode not in ['title', 'year', 'url']:
        raise ValueError("mode must be either 'title' or 'year' or 'url'.")

    if mode == 'title':
        if not title or not years or len(years) != 1:
            raise ValueError("For 'title' mode, 'title' must be provided and 'years' must be a single-element list like ['mm/yyyy'].")
        date = years[0]
        df = extract_div_from_title_with_fallback(title, date=date)
        return df[['title', 'discussion_url', 'discussion', 'outcome']]
    
    elif mode == 'url':
        if title or years:
            raise ValueError("For 'url' mode, 'title' must be empty and 'years' must be empty.")
        #collect the title and date from the url like: base_url = 'https://el.wikipedia.org/wiki/Βικιπαίδεια:Σελίδες_για_διαγραφή'/{date_str}#{title}
        match = re.search(r'Βικιπαίδεια:Σελίδες_για_διαγραφή/([^#]+)#(.+)', url)
        if not match:
            raise ValueError("URL format is incorrect.")
        date_str, title = match.groups()
        print(date_str, title)
        df = extract_div_from_title_with_fallback(title, date=date_str)
        return df[['title', 'discussion_url', 'discussion', 'outcome']]


    elif mode == 'year':
        if title or not years:
            raise ValueError("For 'year' mode, 'title' must be empty and 'years' must be provided.")
        if len(years) == 1:
            start_year = end_year = years[0]
        elif len(years) == 2:
            start_year, end_year = min(years), max(years)
        else:
            raise ValueError("Invalid years input. Provide one year or two years for a range.")

        all_data = []
        for year in range(start_year, end_year + 1):
            url = f"https://el.wikipedia.org/wiki/Βικιπαίδεια:Σελίδες_για_διαγραφή/Ιανουαρίου_{year}"
            df = extract_discussions_from_page_collapsible(url)
            if df.empty:
                df = extract_discussions_from_page_non_collapsible(url)

            if not df.empty:
                df['result'] = df['result'].apply(normalize_outcome)
                df['discussion_url'] = df.apply(lambda row: row['text_url'] + '#' + row['title'].replace(' ', '_'), axis=1)
                df = df.rename(columns={'result':'outcome'})
                all_data.append(df[['title', 'discussion_url', 'discussion', 'outcome']])

        if all_data:
            return pd.concat(all_data, ignore_index=True)
        else:
            return pd.DataFrame(columns=['title', 'discussion_url', 'discussion', 'outcome'])