Spaces:
Sleeping
Sleeping
File size: 15,539 Bytes
0d0a4e0 cb58c8d 9a3ff71 cb58c8d 0d0a4e0 3c77d98 cb58c8d 0d0a4e0 7ba3a06 0d0a4e0 9a3ff71 3c77d98 9a3ff71 cb58c8d 9a3ff71 3c77d98 9a3ff71 cb58c8d 3c77d98 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 0d0a4e0 cb58c8d 7ba3a06 cb58c8d 7ba3a06 cb58c8d 7ba3a06 cb58c8d 0d0a4e0 cb58c8d 0d0a4e0 cb58c8d 0d0a4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# #using pipeline to predict the input text
# import pandas as pd
# from transformers import pipeline, AutoTokenizer
# import pysbd
# #-----------------Outcome Prediction-----------------
# def outcome(text):
# label_mapping = {
# 'delete': [0, 'LABEL_0'],
# 'keep': [1, 'LABEL_1'],
# 'merge': [2, 'LABEL_2'],
# 'no consensus': [3, 'LABEL_3'],
# 'speedy keep': [4, 'LABEL_4'],
# 'speedy delete': [5, 'LABEL_5'],
# 'redirect': [6, 'LABEL_6'],
# 'withdrawn': [7, 'LABEL_7']
# }
# model_name = "research-dump/roberta-large_deletion_multiclass_complete_final"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = pipeline("text-classification", model=model_name, return_all_scores=True)
# # Tokenize and truncate the text
# tokens = tokenizer(text, truncation=True, max_length=512)
# truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
# results = model(truncated_text)
# res_list = []
# for result in results[0]:
# for key, value in label_mapping.items():
# if result['label'] == value[1]:
# res_list.append({'sentence': truncated_text, 'outcome': key, 'score': result['score']})
# break
# return res_list
# #-----------------Stance Prediction-----------------
# def extract_response(text, model_name, label_mapping):
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# pipe = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None)
# tokens = tokenizer(text, truncation=True, max_length=512)
# truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
# results = pipe(truncated_text)
# final_scores = {key: 0.0 for key in label_mapping}
# for result in results[0]:
# for key, value in label_mapping.items():
# if result['label'] == f'LABEL_{value}':
# final_scores[key] = result['score']
# break
# return final_scores
# def get_stance(text):
# label_mapping = {
# 'delete': 0,
# 'keep': 1,
# 'merge': 2,
# 'comment': 3
# }
# seg = pysbd.Segmenter(language="en", clean=False)
# text_list = seg.segment(text)
# model = 'research-dump/bert-large-uncased_wikistance_v1'
# res_list = []
# for t in text_list:
# res = extract_response(t, model,label_mapping) #, access_token)
# highest_key = max(res, key=res.get)
# highest_score = res[highest_key]
# result = {'sentence':t,'stance': highest_key, 'score': highest_score}
# res_list.append(result)
# return res_list
# #-----------------Policy Prediction-----------------
# def get_policy(text):
# label_mapping = {'Wikipedia:Notability': 0,
# 'Wikipedia:What Wikipedia is not': 1,
# 'Wikipedia:Neutral point of view': 2,
# 'Wikipedia:Verifiability': 3,
# 'Wikipedia:Wikipedia is not a dictionary': 4,
# 'Wikipedia:Wikipedia is not for things made up one day': 5,
# 'Wikipedia:Criteria for speedy deletion': 6,
# 'Wikipedia:Deletion policy': 7,
# 'Wikipedia:No original research': 8,
# 'Wikipedia:Biographies of living persons': 9,
# 'Wikipedia:Arguments to avoid in deletion discussions': 10,
# 'Wikipedia:Conflict of interest': 11,
# 'Wikipedia:Articles for deletion': 12
# }
# seg = pysbd.Segmenter(language="en", clean=False)
# text_list = seg.segment(text)
# model = 'research-dump/bert-large-uncased_wikistance_policy_v1'
# res_list = []
# for t in text_list:
# res = extract_response(t, model,label_mapping)
# highest_key = max(res, key=res.get)
# highest_score = res[highest_key]
# result = {'sentence': t, 'policy': highest_key, 'score': highest_score}
# res_list.append(result)
# return res_list
# #-----------------Sentiment Analysis-----------------
# def extract_highest_score_label(res):
# flat_res = [item for sublist in res for item in sublist]
# highest_score_item = max(flat_res, key=lambda x: x['score'])
# highest_score_label = highest_score_item['label']
# highest_score_value = highest_score_item['score']
# return highest_score_label, highest_score_value
# def get_sentiment(text):
# #sentiment analysis
# model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = pipeline("text-classification", model=model_name, top_k= None)
# #sentence tokenize the text using pysbd
# seg = pysbd.Segmenter(language="en", clean=False)
# text_list = seg.segment(text)
# res = []
# for t in text_list:
# results = model(t)
# highest_label, highest_score = extract_highest_score_label(results)
# result = {'sentence': t,'sentiment': highest_label, 'score': highest_score}
# res.append(result)
# return res
# #-----------------Toxicity Prediction-----------------
# def get_offensive_label(text):
# #offensive language detection model
# model_name = "cardiffnlp/twitter-roberta-base-offensive"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = pipeline("text-classification", model=model_name, top_k= None)
# #sentence tokenize the text using pysbd
# seg = pysbd.Segmenter(language="en", clean=False)
# text_list = seg.segment(text)
# res = []
# for t in text_list:
# results = model(t)
# highest_label, highest_score = extract_highest_score_label(results)
# result = {'sentence': t,'offensive_label': highest_label, 'score': highest_score}
# res.append(result)
# return res
# #create the anchor function
# def predict_text(text, model_name):
# if model_name == 'outcome':
# return outcome(text)
# elif model_name == 'stance':
# return get_stance(text)
# elif model_name == 'policy':
# return get_policy(text)
# elif model_name == 'sentiment':
# return get_sentiment(text)
# elif model_name == 'offensive':
# return get_offensive_label(text)
# else:
# return "Invalid model name"
import pandas as pd
from transformers import pipeline, AutoTokenizer
import pysbd
import torch
label_mapping_wikipedia_en = {
'delete': [0, 'LABEL_0'],
'keep': [1, 'LABEL_1'],
'merge': [2, 'LABEL_2'],
'no consensus': [3, 'LABEL_3'],
'speedy keep': [4, 'LABEL_4'],
'speedy delete': [5, 'LABEL_5'],
'redirect': [6, 'LABEL_6'],
'withdrawn': [7, 'LABEL_7']
}
label_mapping_es = {
'Borrar': [0, 'LABEL_0'],
'Mantener': [1, 'LABEL_1'],
'Fusionar': [2, 'LABEL_2'],
'Otros': [3, 'LABEL_3']
}
label_mapping_gr = {
'Διαγραφή': [0, 'LABEL_0'],
'Δεν υπάρχει συναίνεση': [1, 'LABEL_1'],
'Διατήρηση': [2, 'LABEL_2'],
'συγχώνευση': [3, 'LABEL_3']
}
label_mapping_wikidata_ent = {
'delete': [0, 'LABEL_0'],
'no_consensus': [1, 'LABEL_1'],
'merge': [2, 'LABEL_2'],
'keep': [3, 'LABEL_3'],
'comment': [4, 'LABEL_4'],
'redirect': [5, 'LABEL_5']
}
label_mapping_wikidata_prop = {
'deleted': [0, 'LABEL_0'],
'keep': [1, 'LABEL_1'],
'no_consensus': [2, 'LABEL_2']
}
label_mapping_wikinews = {
'delete': [0, 'LABEL_0'],
'no_consensus': [1, 'LABEL_1'],
'speedy delete': [2, 'LABEL_2'],
'keep': [3, 'LABEL_3'],
'redirect': [4, 'LABEL_4'],
'comment': [5, 'LABEL_5'],
'merge': [6, 'LABEL_6'],
'withdrawn': [7, 'LABEL_7']
}
label_mapping_wikiquote = {
'merge': [0, 'LABEL_0'],
'keep': [1, 'LABEL_1'],
'no_consensus': [2, 'LABEL_2'],
'redirect': [3, 'LABEL_3'],
'delete': [4, 'LABEL_4']
}
best_models_tasks = {
'wikipedia': 'research-dump/roberta-large_deletion_multiclass_complete_final_v2',
'wikidata_entity': 'research-dump/roberta-large_wikidata_ent_outcome_prediction_v1',
'wikidata_property': 'research-dump/roberta-large_wikidata_prop_outcome_prediction_v1',
'wikinews': 'research-dump/all-roberta-large-v1_wikinews_outcome_prediction_v1',
'wikiquote': 'research-dump/roberta-large_wikiquote_outcome_prediction_v1'
}
best_models_langs = {
'en': 'research-dump/roberta-large_deletion_multiclass_complete_final_v2',
'es': 'research-dump/xlm-roberta-large_deletion_multiclass_es',
'gr': 'research-dump/xlm-roberta-large_deletion_multiclass_gr'
}
#-----------------Outcome Prediction-----------------
def outcome(text, lang='en', platform='wikipedia', date='', years=None):
if lang == 'en':
if platform not in best_models_tasks:
raise ValueError(f"For lang='en', platform must be one of {list(best_models_tasks.keys())}")
model_name = best_models_tasks[platform]
if platform == 'wikipedia':
label_mapping = label_mapping_wikipedia_en
elif platform == 'wikidata_entity':
label_mapping = label_mapping_wikidata_ent
elif platform == 'wikidata_property':
label_mapping = label_mapping_wikidata_prop
elif platform == 'wikinews':
label_mapping = label_mapping_wikinews
elif platform == 'wikiquote':
label_mapping = label_mapping_wikiquote
elif lang in ['es', 'gr']:
if platform != 'wikipedia':
raise ValueError(f"For lang='{lang}', only platform='wikipedia' is supported.")
model_name = best_models_langs[lang]
label_mapping = label_mapping_es if lang == 'es' else label_mapping_gr
else:
raise ValueError("Invalid lang. Use 'en', 'es', or 'gr'.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, return_all_scores=True, device=device)
tokens = tokenizer(text, truncation=True, max_length=512)
truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
results = model(truncated_text)
res_list = []
for result in results[0]:
for key, value in label_mapping.items():
if result['label'] == value[1]:
res_list.append({'sentence': truncated_text, 'outcome': key, 'score': result['score']})
break
return res_list
def extract_response(text, model_name, label_mapping):
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None)
tokens = tokenizer(text, truncation=True, max_length=512)
truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
results = pipe(truncated_text)
final_scores = {key: 0.0 for key in label_mapping}
for result in results[0]:
for key, value in label_mapping.items():
if result['label'] == f'LABEL_{value}':
final_scores[key] = result['score']
break
return final_scores
#-----------------Stance Detection-----------------
def get_stance(text):
label_mapping = {
'delete': 0,
'keep': 1,
'merge': 2,
'comment': 3
}
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
model = 'research-dump/bert-large-uncased_wikistance_v1'
res_list = []
for t in text_list:
res = extract_response(t, model,label_mapping) #, access_token)
highest_key = max(res, key=res.get)
highest_score = res[highest_key]
result = {'sentence':t,'stance': highest_key, 'score': highest_score}
res_list.append(result)
return res_list
#-----------------Policy Prediction-----------------
def get_policy(text):
label_mapping = {'Wikipedia:Notability': 0,
'Wikipedia:What Wikipedia is not': 1,
'Wikipedia:Neutral point of view': 2,
'Wikipedia:Verifiability': 3,
'Wikipedia:Wikipedia is not a dictionary': 4,
'Wikipedia:Wikipedia is not for things made up one day': 5,
'Wikipedia:Criteria for speedy deletion': 6,
'Wikipedia:Deletion policy': 7,
'Wikipedia:No original research': 8,
'Wikipedia:Biographies of living persons': 9,
'Wikipedia:Arguments to avoid in deletion discussions': 10,
'Wikipedia:Conflict of interest': 11,
'Wikipedia:Articles for deletion': 12
}
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
model = 'research-dump/bert-large-uncased_wikistance_policy_v1'
res_list = []
for t in text_list:
res = extract_response(t, model,label_mapping)
highest_key = max(res, key=res.get)
highest_score = res[highest_key]
result = {'sentence': t, 'policy': highest_key, 'score': highest_score}
res_list.append(result)
return res_list
#-----------------Sentiment Analysis-----------------
def extract_highest_score_label(res):
flat_res = [item for sublist in res for item in sublist]
highest_score_item = max(flat_res, key=lambda x: x['score'])
highest_score_label = highest_score_item['label']
highest_score_value = highest_score_item['score']
return highest_score_label, highest_score_value
def get_sentiment(text):
#sentiment analysis
model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, top_k= None)
#sentence tokenize the text using pysbd
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
res = []
for t in text_list:
results = model(t)
highest_label, highest_score = extract_highest_score_label(results)
result = {'sentence': t,'sentiment': highest_label, 'score': highest_score}
res.append(result)
return res
#-----------------Toxicity Prediction-----------------
def get_offensive_label(text):
#offensive language detection model
model_name = "cardiffnlp/twitter-roberta-base-offensive"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, top_k= None)
#sentence tokenize the text using pysbd
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
res = []
for t in text_list:
results = model(t)
highest_label, highest_score = extract_highest_score_label(results)
result = {'sentence': t,'offensive_label': highest_label, 'score': highest_score}
res.append(result)
return res
def predict_text(text, model_name, lang='en', platform='wikipedia', date='', years=None):
if model_name == 'outcome':
return outcome(text, lang=lang, platform=platform, date=date, years=years)
elif model_name == 'stance':
return get_stance(text)
elif model_name == 'policy':
return get_policy(text)
elif model_name == 'sentiment':
return get_sentiment(text)
elif model_name == 'offensive':
return get_offensive_label(text)
else:
return "Invalid model name"
|