File size: 15,539 Bytes
0d0a4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb58c8d
9a3ff71
cb58c8d
0d0a4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77d98
cb58c8d
0d0a4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
0d0a4e0
 
9a3ff71
 
3c77d98
9a3ff71
 
cb58c8d
9a3ff71
3c77d98
9a3ff71
cb58c8d
3c77d98
cb58c8d
9a3ff71
 
cb58c8d
 
 
9a3ff71
cb58c8d
 
9a3ff71
cb58c8d
9a3ff71
cb58c8d
 
 
 
 
 
9a3ff71
cb58c8d
 
0d0a4e0
cb58c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
cb58c8d
 
 
 
 
7ba3a06
cb58c8d
 
 
 
 
 
7ba3a06
cb58c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a4e0
cb58c8d
0d0a4e0
cb58c8d
 
 
 
 
 
 
 
 
0d0a4e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# #using pipeline to predict the input text
# import pandas as pd
# from transformers import pipeline, AutoTokenizer
# import pysbd

# #-----------------Outcome Prediction-----------------
# def outcome(text):
#     label_mapping = {
#         'delete': [0, 'LABEL_0'],
#         'keep': [1, 'LABEL_1'],
#         'merge': [2, 'LABEL_2'],
#         'no consensus': [3, 'LABEL_3'],
#         'speedy keep': [4, 'LABEL_4'],
#         'speedy delete': [5, 'LABEL_5'],
#         'redirect': [6, 'LABEL_6'],
#         'withdrawn': [7, 'LABEL_7']
#     }
#     model_name = "research-dump/roberta-large_deletion_multiclass_complete_final"
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = pipeline("text-classification", model=model_name, return_all_scores=True)
    
#     # Tokenize and truncate the text
#     tokens = tokenizer(text, truncation=True, max_length=512)
#     truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
    
#     results = model(truncated_text)
    
#     res_list = []
#     for result in results[0]:
#         for key, value in label_mapping.items():
#             if result['label'] == value[1]:
#                 res_list.append({'sentence': truncated_text, 'outcome': key, 'score': result['score']})
#                 break
    
#     return res_list


# #-----------------Stance Prediction-----------------

# def extract_response(text, model_name, label_mapping):
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     pipe = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None)

#     tokens = tokenizer(text, truncation=True, max_length=512)
#     truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
    
#     results = pipe(truncated_text)
    
#     final_scores = {key: 0.0 for key in label_mapping}
#     for result in results[0]:
#         for key, value in label_mapping.items():
#             if result['label'] == f'LABEL_{value}':
#                 final_scores[key] = result['score']
#                 break
    
#     return final_scores


# def get_stance(text):
#     label_mapping = {
#             'delete': 0,
#             'keep': 1,
#             'merge': 2,
#             'comment': 3
#         }
#     seg = pysbd.Segmenter(language="en", clean=False)
#     text_list = seg.segment(text)
#     model = 'research-dump/bert-large-uncased_wikistance_v1'
#     res_list = []
#     for t in text_list:
#         res = extract_response(t, model,label_mapping) #, access_token)
#         highest_key = max(res, key=res.get)
#         highest_score = res[highest_key]
#         result = {'sentence':t,'stance': highest_key, 'score': highest_score}
#         res_list.append(result)
    
#     return res_list


# #-----------------Policy Prediction-----------------
# def get_policy(text):
#     label_mapping = {'Wikipedia:Notability': 0,
#             'Wikipedia:What Wikipedia is not': 1,
#             'Wikipedia:Neutral point of view': 2,
#             'Wikipedia:Verifiability': 3,
#             'Wikipedia:Wikipedia is not a dictionary': 4,
#             'Wikipedia:Wikipedia is not for things made up one day': 5,
#             'Wikipedia:Criteria for speedy deletion': 6,
#             'Wikipedia:Deletion policy': 7,
#             'Wikipedia:No original research': 8,
#             'Wikipedia:Biographies of living persons': 9,
#             'Wikipedia:Arguments to avoid in deletion discussions': 10,
#             'Wikipedia:Conflict of interest': 11,
#             'Wikipedia:Articles for deletion': 12
#             }
    

#     seg = pysbd.Segmenter(language="en", clean=False)
#     text_list = seg.segment(text)
#     model = 'research-dump/bert-large-uncased_wikistance_policy_v1'
#     res_list = []
    
#     for t in text_list:
#         res = extract_response(t, model,label_mapping)
#         highest_key = max(res, key=res.get)
#         highest_score = res[highest_key]
#         result = {'sentence': t, 'policy': highest_key, 'score': highest_score}
#         res_list.append(result)
    
#     return res_list



# #-----------------Sentiment Analysis-----------------

# def extract_highest_score_label(res):
#     flat_res = [item for sublist in res for item in sublist]
#     highest_score_item = max(flat_res, key=lambda x: x['score'])
#     highest_score_label = highest_score_item['label']
#     highest_score_value = highest_score_item['score']    
#     return highest_score_label, highest_score_value


# def get_sentiment(text):
#     #sentiment analysis
#     model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = pipeline("text-classification", model=model_name, top_k= None)

#     #sentence tokenize the text using pysbd
#     seg = pysbd.Segmenter(language="en", clean=False)
#     text_list = seg.segment(text)

#     res = []
#     for t in text_list:
#         results = model(t)
#         highest_label, highest_score = extract_highest_score_label(results)
#         result = {'sentence': t,'sentiment': highest_label, 'score': highest_score}
#         res.append(result)
#     return res


# #-----------------Toxicity Prediction-----------------

# def get_offensive_label(text):
#     #offensive language detection model
#     model_name = "cardiffnlp/twitter-roberta-base-offensive"
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = pipeline("text-classification", model=model_name, top_k= None)

#     #sentence tokenize the text using pysbd
#     seg = pysbd.Segmenter(language="en", clean=False)
#     text_list = seg.segment(text)

#     res = []
#     for t in text_list:
#         results = model(t)
#         highest_label, highest_score = extract_highest_score_label(results)
#         result = {'sentence': t,'offensive_label': highest_label, 'score': highest_score}
#         res.append(result)
#     return res


# #create the anchor function
# def predict_text(text, model_name):
#     if model_name == 'outcome':
#         return outcome(text)
#     elif model_name == 'stance':
#         return get_stance(text)
#     elif model_name == 'policy':
#         return get_policy(text)
#     elif model_name == 'sentiment':
#         return get_sentiment(text)
#     elif model_name == 'offensive':
#         return get_offensive_label(text)
#     else:
#         return "Invalid model name"


import pandas as pd
from transformers import pipeline, AutoTokenizer
import pysbd
import torch


label_mapping_wikipedia_en = {
    'delete': [0, 'LABEL_0'],
    'keep': [1, 'LABEL_1'],
    'merge': [2, 'LABEL_2'],
    'no consensus': [3, 'LABEL_3'],
    'speedy keep': [4, 'LABEL_4'],
    'speedy delete': [5, 'LABEL_5'],
    'redirect': [6, 'LABEL_6'],
    'withdrawn': [7, 'LABEL_7']
}

label_mapping_es = {
    'Borrar': [0, 'LABEL_0'],
    'Mantener': [1, 'LABEL_1'],
    'Fusionar': [2, 'LABEL_2'],
    'Otros': [3, 'LABEL_3']
}

label_mapping_gr = {
    'Διαγραφή': [0, 'LABEL_0'],
    'Δεν υπάρχει συναίνεση': [1, 'LABEL_1'],
    'Διατήρηση': [2, 'LABEL_2'],
    'συγχώνευση': [3, 'LABEL_3']
}

label_mapping_wikidata_ent = {
    'delete': [0, 'LABEL_0'],
    'no_consensus': [1, 'LABEL_1'],
    'merge': [2, 'LABEL_2'],
    'keep': [3, 'LABEL_3'],
    'comment': [4, 'LABEL_4'],
    'redirect': [5, 'LABEL_5']
}

label_mapping_wikidata_prop = {
    'deleted': [0, 'LABEL_0'],
    'keep': [1, 'LABEL_1'],
    'no_consensus': [2, 'LABEL_2']
}

label_mapping_wikinews = {
    'delete': [0, 'LABEL_0'],
    'no_consensus': [1, 'LABEL_1'],
    'speedy delete': [2, 'LABEL_2'],
    'keep': [3, 'LABEL_3'],
    'redirect': [4, 'LABEL_4'],
    'comment': [5, 'LABEL_5'],
    'merge': [6, 'LABEL_6'],
    'withdrawn': [7, 'LABEL_7']
}

label_mapping_wikiquote = {
    'merge': [0, 'LABEL_0'],
    'keep': [1, 'LABEL_1'],
    'no_consensus': [2, 'LABEL_2'],
    'redirect': [3, 'LABEL_3'],
    'delete': [4, 'LABEL_4']
}

best_models_tasks = {
    'wikipedia': 'research-dump/roberta-large_deletion_multiclass_complete_final_v2',
    'wikidata_entity': 'research-dump/roberta-large_wikidata_ent_outcome_prediction_v1',
    'wikidata_property': 'research-dump/roberta-large_wikidata_prop_outcome_prediction_v1',
    'wikinews': 'research-dump/all-roberta-large-v1_wikinews_outcome_prediction_v1',
    'wikiquote': 'research-dump/roberta-large_wikiquote_outcome_prediction_v1'
}

best_models_langs = {
    'en': 'research-dump/roberta-large_deletion_multiclass_complete_final_v2',
    'es': 'research-dump/xlm-roberta-large_deletion_multiclass_es',
    'gr': 'research-dump/xlm-roberta-large_deletion_multiclass_gr'
}

#-----------------Outcome Prediction-----------------

def outcome(text, lang='en', platform='wikipedia', date='', years=None):
    if lang == 'en':
        if platform not in best_models_tasks:
            raise ValueError(f"For lang='en', platform must be one of {list(best_models_tasks.keys())}")
        model_name = best_models_tasks[platform]
        if platform == 'wikipedia':
            label_mapping = label_mapping_wikipedia_en
        elif platform == 'wikidata_entity':
            label_mapping = label_mapping_wikidata_ent
        elif platform == 'wikidata_property':
            label_mapping = label_mapping_wikidata_prop
        elif platform == 'wikinews':
            label_mapping = label_mapping_wikinews
        elif platform == 'wikiquote':
            label_mapping = label_mapping_wikiquote
    elif lang in ['es', 'gr']:
        if platform != 'wikipedia':
            raise ValueError(f"For lang='{lang}', only platform='wikipedia' is supported.")
        model_name = best_models_langs[lang]
        label_mapping = label_mapping_es if lang == 'es' else label_mapping_gr
    else:
        raise ValueError("Invalid lang. Use 'en', 'es', or 'gr'.")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = pipeline("text-classification", model=model_name, return_all_scores=True, device=device)

    tokens = tokenizer(text, truncation=True, max_length=512)
    truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
    
    results = model(truncated_text)
    
    res_list = []
    for result in results[0]:
        for key, value in label_mapping.items():
            if result['label'] == value[1]:
                res_list.append({'sentence': truncated_text, 'outcome': key, 'score': result['score']})
                break
    return res_list


def extract_response(text, model_name, label_mapping):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    pipe = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None)

    tokens = tokenizer(text, truncation=True, max_length=512)
    truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
    
    results = pipe(truncated_text)
    
    final_scores = {key: 0.0 for key in label_mapping}
    for result in results[0]:
        for key, value in label_mapping.items():
            if result['label'] == f'LABEL_{value}':
                final_scores[key] = result['score']
                break
    
    return final_scores

#-----------------Stance Detection-----------------
def get_stance(text):
    label_mapping = {
            'delete': 0,
            'keep': 1,
            'merge': 2,
            'comment': 3
        }
    seg = pysbd.Segmenter(language="en", clean=False)
    text_list = seg.segment(text)
    model = 'research-dump/bert-large-uncased_wikistance_v1'
    res_list = []
    for t in text_list:
        res = extract_response(t, model,label_mapping) #, access_token)
        highest_key = max(res, key=res.get)
        highest_score = res[highest_key]
        result = {'sentence':t,'stance': highest_key, 'score': highest_score}
        res_list.append(result)
    
    return res_list


#-----------------Policy Prediction-----------------
def get_policy(text):
    label_mapping = {'Wikipedia:Notability': 0,
            'Wikipedia:What Wikipedia is not': 1,
            'Wikipedia:Neutral point of view': 2,
            'Wikipedia:Verifiability': 3,
            'Wikipedia:Wikipedia is not a dictionary': 4,
            'Wikipedia:Wikipedia is not for things made up one day': 5,
            'Wikipedia:Criteria for speedy deletion': 6,
            'Wikipedia:Deletion policy': 7,
            'Wikipedia:No original research': 8,
            'Wikipedia:Biographies of living persons': 9,
            'Wikipedia:Arguments to avoid in deletion discussions': 10,
            'Wikipedia:Conflict of interest': 11,
            'Wikipedia:Articles for deletion': 12
            }
    

    seg = pysbd.Segmenter(language="en", clean=False)
    text_list = seg.segment(text)
    model = 'research-dump/bert-large-uncased_wikistance_policy_v1'
    res_list = []
    
    for t in text_list:
        res = extract_response(t, model,label_mapping)
        highest_key = max(res, key=res.get)
        highest_score = res[highest_key]
        result = {'sentence': t, 'policy': highest_key, 'score': highest_score}
        res_list.append(result)
    
    return res_list



#-----------------Sentiment Analysis-----------------

def extract_highest_score_label(res):
    flat_res = [item for sublist in res for item in sublist]
    highest_score_item = max(flat_res, key=lambda x: x['score'])
    highest_score_label = highest_score_item['label']
    highest_score_value = highest_score_item['score']    
    return highest_score_label, highest_score_value


def get_sentiment(text):
    #sentiment analysis
    model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = pipeline("text-classification", model=model_name, top_k= None)

    #sentence tokenize the text using pysbd
    seg = pysbd.Segmenter(language="en", clean=False)
    text_list = seg.segment(text)

    res = []
    for t in text_list:
        results = model(t)
        highest_label, highest_score = extract_highest_score_label(results)
        result = {'sentence': t,'sentiment': highest_label, 'score': highest_score}
        res.append(result)
    return res


#-----------------Toxicity Prediction-----------------

def get_offensive_label(text):
    #offensive language detection model
    model_name = "cardiffnlp/twitter-roberta-base-offensive"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = pipeline("text-classification", model=model_name, top_k= None)

    #sentence tokenize the text using pysbd
    seg = pysbd.Segmenter(language="en", clean=False)
    text_list = seg.segment(text)

    res = []
    for t in text_list:
        results = model(t)
        highest_label, highest_score = extract_highest_score_label(results)
        result = {'sentence': t,'offensive_label': highest_label, 'score': highest_score}
        res.append(result)
    return res


def predict_text(text, model_name, lang='en', platform='wikipedia', date='', years=None):
    if model_name == 'outcome':
        return outcome(text, lang=lang, platform=platform, date=date, years=years)
    elif model_name == 'stance':
        return get_stance(text)
    elif model_name == 'policy':
        return get_policy(text)
    elif model_name == 'sentiment':
        return get_sentiment(text)
    elif model_name == 'offensive':
        return get_offensive_label(text)
    else:
        return "Invalid model name"