import matplotlib.pyplot as plt import gradio as gr from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation import torch import numpy as np extractor = AutoFeatureExtractor.from_pretrained("hshetty/segmentation-model-finetuned-on-semantic-sidewalk-3e-4-e5") model = SegformerForSemanticSegmentation.from_pretrained("hshetty/segmentation-model-finetuned-on-semantic-sidewalk-3e-4-e5") counter = 0 def classify(im): inputs = extractor(images=im, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits classes = logits[0].detach().cpu().numpy().argmax(axis=0) colors = np.array([[128,0,0], [128,128,0], [0, 0, 128], [128,0,128], [0, 0, 0]]) counter+=1 print("hshetty:{}".format(counter)) return colors[classes] interface = gr.Interface(fn=classify, inputs="image", outputs="image", title="Self Driving Car App- Semantic Segmentation", description="This is a self driving car app using Semantic Segmentation as part of week 2 end to end vision application project on CoRise by Abubakar Abid!", examples=["https://datasets-server.huggingface.co/assets/segments/sidewalk-semantic/--/segments--sidewalk-semantic-2/train/3/pixel_values/image.jpg", "https://datasets-server.huggingface.co/assets/segments/sidewalk-semantic/--/segments--sidewalk-semantic-2/train/5/pixel_values/image.jpg", "https://datasets-server.huggingface.co/assets/segments/sidewalk-semantic/--/segments--sidewalk-semantic-2/train/20/pixel_values/image.jpg"]) # FILL HERE interface.launch()