Spaces:
Runtime error
Runtime error
Initial app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
import requests
|
4 |
+
import base64
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
device = "cuda"
|
10 |
+
generator = torch.Generator(device=device)
|
11 |
+
|
12 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
13 |
+
hf_writer =gr.HuggingFaceDatasetSaver(HF_TOKEN, "dst-movie-poster-demo")
|
14 |
+
|
15 |
+
|
16 |
+
def improve_image(img):
|
17 |
+
# ANSWER HERE
|
18 |
+
img_in_base64 = gr.processing_utils.encode_pil_to_base64(img)
|
19 |
+
scale=3
|
20 |
+
resp_obj = requests.post('https://hf.space/embed/abidlabs/GFPGAN/+/api/predict',json={'data':[img_in_base64,scale]})
|
21 |
+
resp_img = gr.processing_utils.decode_base64_to_image((resp_obj.json())['data'][0])
|
22 |
+
return resp_img
|
23 |
+
|
24 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
25 |
+
pipe = pipe.to("cuda")
|
26 |
+
|
27 |
+
def generate(celebrity, setting):
|
28 |
+
# ANSWER HERE
|
29 |
+
prompt = 'A movie poster of {} in the movie{}'.format(celebrity,setting)
|
30 |
+
latent_sample = torch.randn((1,4,64,64),generator = generator,device=device)
|
31 |
+
gen_img = pipe(prompt,latents=latent_sample,num_inference_steps=100,guidance_scale=g_scale[i]).images[0]
|
32 |
+
image = improve_image(gen_img)
|
33 |
+
return image
|
34 |
+
|
35 |
+
gr.Interface(
|
36 |
+
# ANSWER HERE
|
37 |
+
fn=generate,
|
38 |
+
inputs=[gr.Textbox(label='Celebrity'), gr.Dropdown(['The Godfather', 'Titanic', 'Fast and Furious'], label='Movie')],
|
39 |
+
outputs = gr.Image(type='pill'),
|
40 |
+
allow_flagging="manual",
|
41 |
+
flagging_options = ['Incorrect movie poster','Incorrect Actor','Other Problem'],
|
42 |
+
flagging_callback=hf_writer,
|
43 |
+
flagging_dir='/flagged_data'
|
44 |
+
).launch()
|