import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification import gradio as gr import torch dataset = datasets.load_dataset('beans','full_size') # This should be the same as the first line of Python code in this Colab notebook extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = extractor(im, return_tensors='pt') with torch.no_grad(): logits = model(features["pixel_values"])[-1] #logits = torch.nn.functional.softmax(logits, dim=-1) probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} print(confidences) return confidences interface = gr.Interface(fn=classify, inputs="image", outputs=gr.Label(num_top_classes=3), title="Bean leaf health classifier", description="This is a bean leaf health classifier app created as part of CoRise End to End Vision application project", examples=["https://datasets-server.huggingface.co/assets/beans/--/default/validation/3/image/image.jpg", "https://datasets-server.huggingface.co/assets/beans/--/default/test/20/image/image.jpg", "https://datasets-server.huggingface.co/assets/beans/--/default/validation/97/image/image.jpg"]) # FILL HERE interface.launch()