import matplotlib.pyplot as plt from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import gradio as gr model = SentenceTransformer("clip-ViT-B-16") def predict(im1, im2): # ANSWER HERE embeddings = model.encode([im1,im2]) cos_sim = cosine_similarity(embeddings) sim = cos_sim[0][1] if sim > 0.80:# THRESHOLD HERE return sim, "SAME PERSON, UNLOCK PHONE" else: return sim, "DIFFERENT PEOPLE, DON'T UNLOCK" interface = gr.Interface(fn=predict, inputs= [gr.Image(type="pil", source="webcam"), gr.Image(type="pil",source="webcam")], outputs= [gr.Number(label="Similarity"), gr.Textbox(label="Message")] ) interface.launch()