|
import matplotlib.pyplot as plt |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import gradio as gr |
|
|
|
model = SentenceTransformer("clip-ViT-B-16") |
|
def predict(im1, im2): |
|
|
|
embeddings = model.encode([im1,im2]) |
|
cos_sim = cosine_similarity(embeddings) |
|
sim = cos_sim[0][1] |
|
if sim > 0.90: |
|
return sim, "SAME PERSON, UNLOCK PHONE" |
|
else: |
|
return sim, "DIFFERENT PEOPLE, DON'T UNLOCK" |
|
|
|
interface = gr.Interface(fn=predict, |
|
inputs= [gr.Image(type="pil", source="webcam"), |
|
gr.Image(type="pil",source="webcam")], |
|
title="FaceID App", |
|
description="This is a FaceID app using Sentence Transformer as part of week 3 end to end vision application project on CoRise by Abubakar Abid!", |
|
outputs= [gr.Number(label="Similarity"), |
|
gr.Textbox(label="Message")] |
|
) |
|
|
|
interface.launch() |
|
|