import os from openai import OpenAI from models.input import Input import re import numpy as np from transformers import pipeline from services.utils import clean_text intent_recognizer = pipeline( "zero-shot-classification", model="facebook/bart-large-mnli") ner_recognizer = pipeline( 'ner', model='dbmdz/bert-large-cased-finetuned-conll03-english') openai_key = os.environ.get("OPENAI_KEY") openai_client = OpenAI(api_key=openai_key) transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") # Define regex patterns for entities patterns = { 'Product': r'\b(iphone|samsung|macbook|ps5|galaxy|pixel|shoes|shampoo|cellphone|smartphone|tablet|laptop|headphones|console|tv|camera)\b', 'Brand': r'\b(apple|samsung|google|sony|microsoft|dell|hp|lenovo|asus|nintendo|canon|nikon)\b', 'Category': r'\b(laptops|dresses|phones|electronics|clothing|footwear|accessories|home appliances|furniture)\b', 'Color': r'\b(red|black|yellow|blue|green|white|grey|pink|purple|orange|brown)\b', 'Price Range': r'\b(under \$?\d+|below \$?\d+|less than \$?\d+|more than \$?\d+|above \$?\d+|between \$?\d+ and \$?\d+)\b', 'Quantity': r'\b(\d+ bottles|\d+ items|\d+ pieces|\d+ units|\d+)\b', 'Order Number': r'\bB-\d+\b', 'Issue': r'\b(account help|payment issue|order problem|shipping delay|return request|product complaint|technical support)\b' } INTENTS = [ "search for products", "order management", "checkout", "customer support", "account management" ] def transcribe(audio): sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] def recognize_intent(text): cleaned_text = clean_text(text) intent = intent_recognizer(cleaned_text, INTENTS) return intent['labels'][0] def recognize_entities(text): cleaned_text = clean_text(text) entities_from_ner = ner_recognizer(cleaned_text) entities_from_re = {entity: re.findall(pattern, text.lower( )) for entity, pattern in patterns.items() if re.findall(pattern, text.lower())} return entities_from_re def extract_keywords(text): cleaned_text = clean_text(text) return cleaned_text.split() def generate_response(input: Input, context_from_elasticsearch): prompt = input.history prompt.append({"role": "assistant", "content": str(context_from_elasticsearch)}) print(prompt) response = openai_client.chat.completions.create( model="gpt-4o-mini", messages=prompt ) return response.choices[0].message.content