# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math from typing import List, Optional import numpy as np import torch from torch import Tensor, nn # from util.misc import NestedTensor class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat( x.shape[0], 1, 1, 1) return pos class PositionEmbeddingSine1D(nn.Module): def __init__(self, d_model, max_len=500, batch_first=False): super().__init__() self.batch_first = batch_first pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): # not used in the final model if self.batch_first: pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :] else: pos = self.pe[:x.shape[0], :] return pos class PositionEmbeddingLearned1D(nn.Module): def __init__(self, d_model, max_len=500, batch_first=False): super().__init__() self.batch_first = batch_first # self.dropout = nn.Dropout(p=dropout) self.pe = nn.Parameter(torch.zeros(max_len, 1, d_model)) # self.pe = pe.unsqueeze(0).transpose(0, 1) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.pe) def forward(self, x): # not used in the final model if self.batch_first: pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :] else: x = x + self.pe[:x.shape[0], :] return x # return self.dropout(x) def build_position_encoding(N_steps, position_embedding="sine", embedding_dim="1D"): # N_steps = hidden_dim // 2 if embedding_dim == "1D": if position_embedding in ('v2', 'sine'): position_embedding = PositionEmbeddingSine1D(N_steps) elif position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned1D(N_steps) else: raise ValueError(f"not supported {position_embedding}") elif embedding_dim == "2D": if position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {position_embedding}") else: raise ValueError(f"not supported {embedding_dim}") return position_embedding