Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
import glob | |
import pickle | |
import pyrender | |
import trimesh | |
import smplx | |
from pathlib import Path | |
from shapely import geometry | |
from smplx import SMPL as _SMPL | |
from smplx.utils import SMPLOutput as ModelOutput | |
from scipy.spatial.transform.rotation import Rotation as RRR | |
class Renderer: | |
""" | |
Renderer used for visualizing the SMPL model | |
Code adapted from https://github.com/vchoutas/smplify-x | |
""" | |
def __init__(self, vertices, focal_length=5000, img_res=(224,224), faces=None): | |
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0], | |
viewport_height=img_res[1], | |
point_size=2.0) | |
self.focal_length = focal_length | |
self.camera_center = [img_res[0] // 2, img_res[1] // 2] | |
self.faces = faces | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
else: | |
self.device = torch.device("cpu") | |
self.rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0]) | |
minx, miny, minz = vertices.min(axis=(0, 1)) | |
maxx, maxy, maxz = vertices.max(axis=(0, 1)) | |
minx = minx - 0.5 | |
maxx = maxx + 0.5 | |
minz = minz - 0.5 | |
maxz = maxz + 0.5 | |
floor = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]]) | |
self.floor = trimesh.creation.extrude_polygon(floor, 1e-5) | |
self.floor.visual.face_colors = [0, 0, 0, 0.2] | |
self.floor.apply_transform(self.rot) | |
self.floor_pose =np.array([[ 1, 0, 0, 0], | |
[ 0, np.cos(np.pi / 2), -np.sin(np.pi / 2), miny], | |
[ 0, np.sin(np.pi / 2), np.cos(np.pi / 2), 0], | |
[ 0, 0, 0, 1]]) | |
c = -np.pi / 6 | |
self.camera_pose = [[ 1, 0, 0, (minx+maxx)/2], | |
[ 0, np.cos(c), -np.sin(c), 1.5], | |
[ 0, np.sin(c), np.cos(c), max(4, minz+(1.5-miny)*2, (maxx-minx))], | |
[ 0, 0, 0, 1] | |
] | |
def __call__(self, vertices, camera_translation): | |
floor_render = pyrender.Mesh.from_trimesh(self.floor, smooth=False) | |
material = pyrender.MetallicRoughnessMaterial( | |
metallicFactor=0.1, | |
alphaMode='OPAQUE', | |
baseColorFactor=(0.658, 0.214, 0.0114, 0.2)) | |
mesh = trimesh.Trimesh(vertices, self.faces) | |
mesh.apply_transform(self.rot) | |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) | |
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)) | |
light = pyrender.DirectionalLight(color=[1,1,1], intensity=350) | |
spot_l = pyrender.SpotLight(color=np.ones(3), intensity=300.0, | |
innerConeAngle=np.pi/16, outerConeAngle=np.pi/6) | |
point_l = pyrender.PointLight(color=np.ones(3), intensity=300.0) | |
scene = pyrender.Scene(bg_color=(1.,1.,1.,0.8),ambient_light=(0.4, 0.4, 0.4)) | |
scene.add(floor_render, pose=self.floor_pose) | |
scene.add(mesh, 'mesh') | |
light_pose = np.eye(4) | |
light_pose[:3, 3] = np.array([0, -1, 1]) | |
scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = np.array([0, 1, 1]) | |
scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = np.array([1, 1, 2]) | |
scene.add(light, pose=light_pose) | |
scene.add(camera, pose=self.camera_pose) | |
flags = pyrender.RenderFlags.RGBA | pyrender.RenderFlags.SHADOWS_DIRECTIONAL | |
color, rend_depth = self.renderer.render(scene, flags=flags) | |
return color | |
class SMPLRender(): | |
def __init__(self, SMPL_MODEL_DIR): | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
else: | |
self.device = torch.device("cpu") | |
# self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False).to(self.device) | |
self.smpl = smplx.create(Path(SMPL_MODEL_DIR).parent, model_type="smpl", gender="neutral", ext="npz", batch_size=1).to(self.device) | |
self.pred_camera_t = [] | |
self.focal_length = 110 | |
def init_renderer(self, res, smpl_param, is_headroot=False): | |
poses = smpl_param['pred_pose'] | |
pred_rotmats = [] | |
for pose in poses: | |
if pose.size==72: | |
pose = pose.reshape(-1,3) | |
pose = RRR.from_rotvec(pose).as_matrix() | |
pose = pose.reshape(1,24,3,3) | |
pred_rotmats.append(torch.from_numpy(pose.astype(np.float32)[None]).to(self.device)) | |
pred_rotmat = torch.cat(pred_rotmats, dim=0) | |
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(1, 10).astype(np.float32)).to(self.device) | |
pred_root = torch.tensor(smpl_param['pred_root'].reshape(-1, 3).astype(np.float32),device=self.device) | |
smpl_output = self.smpl(betas=pred_betas, body_pose=pred_rotmat[:, 1:],transl=pred_root, global_orient=pred_rotmat[:, :1], pose2rot=False) | |
self.vertices = smpl_output.vertices.detach().cpu().numpy() | |
pred_root = pred_root[0] | |
if is_headroot: | |
pred_root = pred_root - smpl_output.joints[0,12].detach().cpu().numpy() | |
self.pred_camera_t.append(pred_root) | |
self.renderer = Renderer(vertices=self.vertices, focal_length=self.focal_length, | |
img_res=(res[1], res[0]), faces=self.smpl.faces) | |
def render(self, index): | |
renderImg = self.renderer(self.vertices[index, ...], self.pred_camera_t) | |
return renderImg | |