Spaces:
Sleeping
Sleeping
from typing import List | |
import torch | |
from torch import Tensor | |
from torchmetrics import Metric | |
from .utils import * | |
# motion reconstruction metric | |
class MRMetrics(Metric): | |
def __init__(self, | |
njoints, | |
jointstype: str = "mmm", | |
force_in_meter: bool = True, | |
align_root: bool = True, | |
dist_sync_on_step=True, | |
**kwargs): | |
super().__init__(dist_sync_on_step=dist_sync_on_step) | |
self.name = 'Motion Reconstructions' | |
self.jointstype = jointstype | |
self.align_root = align_root | |
self.force_in_meter = force_in_meter | |
self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum") | |
self.add_state("count_seq", | |
default=torch.tensor(0), | |
dist_reduce_fx="sum") | |
self.add_state("MPJPE", | |
default=torch.tensor([0.0]), | |
dist_reduce_fx="sum") | |
self.add_state("PAMPJPE", | |
default=torch.tensor([0.0]), | |
dist_reduce_fx="sum") | |
self.add_state("ACCEL", | |
default=torch.tensor([0.0]), | |
dist_reduce_fx="sum") | |
# todo | |
# self.add_state("ROOT", default=torch.tensor([0.0]), dist_reduce_fx="sum") | |
self.MR_metrics = ["MPJPE", "PAMPJPE", "ACCEL"] | |
# All metric | |
self.metrics = self.MR_metrics | |
def compute(self, sanity_flag): | |
if self.force_in_meter: | |
# different jointstypes have different scale factors | |
# if self.jointstype == 'mmm': | |
# factor = 1000.0 | |
# elif self.jointstype == 'humanml3d': | |
# factor = 1000.0 * 0.75 / 480 | |
factor = 1000.0 | |
else: | |
factor = 1.0 | |
count = self.count | |
count_seq = self.count_seq | |
mr_metrics = {} | |
mr_metrics["MPJPE"] = self.MPJPE / count * factor | |
mr_metrics["PAMPJPE"] = self.PAMPJPE / count * factor | |
# accel error: joints_gt[:-2] - 2 * joints_gt[1:-1] + joints_gt[2:] | |
# n-2 for each sequences | |
mr_metrics["ACCEL"] = self.ACCEL / (count - 2 * count_seq) * factor | |
# Reset | |
self.reset() | |
return mr_metrics | |
def update(self, joints_rst: Tensor, joints_ref: Tensor, | |
lengths: List[int]): | |
assert joints_rst.shape == joints_ref.shape | |
assert joints_rst.dim() == 4 | |
# (bs, seq, njoint=22, 3) | |
self.count += sum(lengths) | |
self.count_seq += len(lengths) | |
# avoid cuda error of DDP in pampjpe | |
rst = joints_rst.detach().cpu() | |
ref = joints_ref.detach().cpu() | |
# align root joints index | |
if self.align_root and self.jointstype in ['mmm', 'humanml3d']: | |
align_inds = [0] | |
else: | |
align_inds = None | |
for i in range(len(lengths)): | |
self.MPJPE += torch.sum( | |
calc_mpjpe(rst[i], ref[i], align_inds=align_inds)) | |
self.PAMPJPE += torch.sum(calc_pampjpe(rst[i], ref[i])) | |
self.ACCEL += torch.sum(calc_accel(rst[i], ref[i])) | |