Spaces:
Sleeping
Sleeping
import random | |
import numpy as np | |
from torch.utils import data | |
from .dataset_t2m import Text2MotionDataset | |
import codecs as cs | |
from os.path import join as pjoin | |
class Text2MotionDatasetM2T(data.Dataset): | |
def __init__( | |
self, | |
data_root, | |
split, | |
mean, | |
std, | |
max_motion_length=196, | |
min_motion_length=40, | |
unit_length=4, | |
fps=20, | |
tmpFile=True, | |
tiny=False, | |
debug=False, | |
**kwargs, | |
): | |
self.max_motion_length = max_motion_length | |
self.min_motion_length = min_motion_length | |
self.unit_length = unit_length | |
# Data mean and std | |
self.mean = mean | |
self.std = std | |
# Data path | |
split_file = pjoin(data_root, split + '.txt') | |
motion_dir = pjoin(data_root, 'new_joint_vecs') | |
text_dir = pjoin(data_root, 'texts') | |
# Data id list | |
self.id_list = [] | |
with cs.open(split_file, "r") as f: | |
for line in f.readlines(): | |
self.id_list.append(line.strip()) | |
new_name_list = [] | |
length_list = [] | |
data_dict = {} | |
for name in self.id_list: | |
# try: | |
motion = np.load(pjoin(motion_dir, name + '.npy')) | |
if (len(motion)) < self.min_motion_length or (len(motion) >= 200): | |
continue | |
text_data = [] | |
flag = False | |
with cs.open(pjoin(text_dir, name + '.txt')) as f: | |
for line in f.readlines(): | |
text_dict = {} | |
line_split = line.strip().split('#') | |
caption = line_split[0] | |
tokens = line_split[1].split(' ') | |
f_tag = float(line_split[2]) | |
to_tag = float(line_split[3]) | |
f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
text_dict['caption'] = caption | |
text_dict['tokens'] = tokens | |
if f_tag == 0.0 and to_tag == 0.0: | |
flag = True | |
text_data.append(text_dict) | |
else: | |
try: | |
n_motion = motion[int(f_tag*20) : int(to_tag*20)] | |
if (len(n_motion)) < min_motion_length or (len(n_motion) >= 200): | |
continue | |
new_name = "%s_%f_%f"%(name, f_tag, to_tag) | |
data_dict[new_name] = {'motion': n_motion, | |
'length': len(n_motion), | |
'text':[text_dict]} | |
new_name_list.append(new_name) | |
except: | |
print(line_split) | |
print(line_split[2], line_split[3], f_tag, to_tag, name) | |
if flag: | |
data_dict[name] = {'motion': motion, | |
'length': len(motion), | |
'name': name, | |
'text': text_data} | |
new_name_list.append(name) | |
length_list.append(len(motion)) | |
# except: | |
# # Some motion may not exist in KIT dataset | |
# pass | |
self.length_arr = np.array(length_list) | |
self.data_dict = data_dict | |
self.name_list = new_name_list | |
self.nfeats = motion.shape[-1] | |
def __len__(self): | |
return len(self.data_dict) | |
def __getitem__(self, item): | |
name = self.name_list[item] | |
data = self.data_dict[name] | |
motion, m_length = data['motion'], data['length'] | |
"Z Normalization" | |
motion = (motion - self.mean) / self.std | |
return name, motion, m_length, True, True, True, True, True, True | |