Spaces:
Sleeping
Sleeping
from typing import List | |
import os | |
import torch | |
from torch import Tensor | |
from torchmetrics import Metric | |
from .utils import * | |
from bert_score import score as score_bert | |
import spacy | |
from mGPT.config import instantiate_from_config | |
class M2TMetrics(Metric): | |
def __init__(self, | |
cfg, | |
w_vectorizer, | |
dataname='humanml3d', | |
top_k=3, | |
bleu_k=4, | |
R_size=32, | |
max_text_len=40, | |
diversity_times=300, | |
dist_sync_on_step=True, | |
unit_length=4, | |
**kwargs): | |
super().__init__(dist_sync_on_step=dist_sync_on_step) | |
self.cfg = cfg | |
self.dataname = dataname | |
self.w_vectorizer = w_vectorizer | |
self.name = "matching, fid, and diversity scores" | |
# self.text = True if cfg.TRAIN.STAGE in ["diffusion","t2m_gpt"] else False | |
self.max_text_len = max_text_len | |
self.top_k = top_k | |
self.bleu_k = bleu_k | |
self.R_size = R_size | |
self.diversity_times = diversity_times | |
self.unit_length = unit_length | |
self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum") | |
self.add_state("count_seq", | |
default=torch.tensor(0), | |
dist_reduce_fx="sum") | |
self.metrics = [] | |
# Matching scores | |
self.add_state("Matching_score", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum") | |
self.add_state("gt_Matching_score", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum") | |
self.Matching_metrics = ["Matching_score", "gt_Matching_score"] | |
for k in range(1, top_k + 1): | |
self.add_state( | |
f"R_precision_top_{str(k)}", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum", | |
) | |
self.Matching_metrics.append(f"R_precision_top_{str(k)}") | |
for k in range(1, top_k + 1): | |
self.add_state( | |
f"gt_R_precision_top_{str(k)}", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum", | |
) | |
self.Matching_metrics.append(f"gt_R_precision_top_{str(k)}") | |
self.metrics.extend(self.Matching_metrics) | |
# NLG | |
for k in range(1, top_k + 1): | |
self.add_state( | |
f"Bleu_{str(k)}", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum", | |
) | |
self.metrics.append(f"Bleu_{str(k)}") | |
self.add_state("ROUGE_L", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum") | |
self.metrics.append("ROUGE_L") | |
self.add_state("CIDEr", | |
default=torch.tensor(0.0), | |
dist_reduce_fx="sum") | |
self.metrics.append("CIDEr") | |
# Chached batches | |
self.pred_texts = [] | |
self.gt_texts = [] | |
self.add_state("predtext_embeddings", default=[]) | |
self.add_state("gttext_embeddings", default=[]) | |
self.add_state("gtmotion_embeddings", default=[]) | |
# T2M Evaluator | |
self._get_t2m_evaluator(cfg) | |
self.nlp = spacy.load('en_core_web_sm') | |
if self.cfg.model.params.task == 'm2t': | |
from nlgmetricverse import NLGMetricverse, load_metric | |
metrics = [ | |
load_metric("bleu", resulting_name="bleu_1", compute_kwargs={"max_order": 1}), | |
load_metric("bleu", resulting_name="bleu_4", compute_kwargs={"max_order": 4}), | |
load_metric("rouge"), | |
load_metric("cider"), | |
] | |
self.nlg_evaluator = NLGMetricverse(metrics) | |
def _get_t2m_evaluator(self, cfg): | |
""" | |
load T2M text encoder and motion encoder for evaluating | |
""" | |
# init module | |
self.t2m_textencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_textencoder) | |
self.t2m_moveencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_moveencoder) | |
self.t2m_motionencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_motionencoder) | |
# load pretrianed | |
if self.dataname == "kit": | |
dataname = "kit" | |
else: | |
dataname = "t2m" | |
t2m_checkpoint = torch.load(os.path.join( | |
cfg.METRIC.TM2T.t2m_path, dataname, "text_mot_match/model/finest.tar"), | |
map_location='cpu') | |
self.t2m_textencoder.load_state_dict(t2m_checkpoint["text_encoder"]) | |
self.t2m_moveencoder.load_state_dict( | |
t2m_checkpoint["movement_encoder"]) | |
self.t2m_motionencoder.load_state_dict( | |
t2m_checkpoint["motion_encoder"]) | |
# freeze params | |
self.t2m_textencoder.eval() | |
self.t2m_moveencoder.eval() | |
self.t2m_motionencoder.eval() | |
for p in self.t2m_textencoder.parameters(): | |
p.requires_grad = False | |
for p in self.t2m_moveencoder.parameters(): | |
p.requires_grad = False | |
for p in self.t2m_motionencoder.parameters(): | |
p.requires_grad = False | |
def _process_text(self, sentence): | |
sentence = sentence.replace('-', '') | |
doc = self.nlp(sentence) | |
word_list = [] | |
pos_list = [] | |
for token in doc: | |
word = token.text | |
if not word.isalpha(): | |
continue | |
if (token.pos_ == 'NOUN' | |
or token.pos_ == 'VERB') and (word != 'left'): | |
word_list.append(token.lemma_) | |
else: | |
word_list.append(word) | |
pos_list.append(token.pos_) | |
return word_list, pos_list | |
def _get_text_embeddings(self, texts): | |
word_embs = [] | |
pos_ohot = [] | |
text_lengths = [] | |
for i, sentence in enumerate(texts): | |
word_list, pos_list = self._process_text(sentence.strip()) | |
t_tokens = [ | |
'%s/%s' % (word_list[i], pos_list[i]) | |
for i in range(len(word_list)) | |
] | |
if len(t_tokens) < self.max_text_len: | |
# pad with "unk" | |
tokens = ['sos/OTHER'] + t_tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
tokens = tokens + ['unk/OTHER' | |
] * (self.max_text_len + 2 - sent_len) | |
else: | |
# crop | |
tokens = t_tokens[:self.max_text_len] | |
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
pos_one_hots = [] | |
word_embeddings = [] | |
for token in tokens: | |
word_emb, pos_oh = self.w_vectorizer[token] | |
pos_one_hots.append(torch.tensor(pos_oh).float()[None]) | |
word_embeddings.append(torch.tensor(word_emb).float()[None]) | |
text_lengths.append(sent_len) | |
pos_ohot.append(torch.cat(pos_one_hots, dim=0)[None]) | |
word_embs.append(torch.cat(word_embeddings, dim=0)[None]) | |
word_embs = torch.cat(word_embs, dim=0).to(self.Matching_score) | |
pos_ohot = torch.cat(pos_ohot, dim=0).to(self.Matching_score) | |
text_lengths = torch.tensor(text_lengths).to(self.Matching_score) | |
align_idx = np.argsort(text_lengths.data.tolist())[::-1].copy() | |
# get text embeddings | |
text_embeddings = self.t2m_textencoder(word_embs[align_idx], | |
pos_ohot[align_idx], | |
text_lengths[align_idx]) | |
original_text_embeddings = text_embeddings.clone() | |
for idx, sort in enumerate(align_idx): | |
original_text_embeddings[sort] = text_embeddings[idx] | |
return original_text_embeddings | |
def compute(self, sanity_flag): | |
count = self.count.item() | |
count_seq = self.count_seq.item() | |
# Init metrics dict | |
metrics = {metric: getattr(self, metric) for metric in self.metrics} | |
# Jump in sanity check stage | |
if sanity_flag: | |
return metrics | |
# Cat cached batches and shuffle | |
shuffle_idx = torch.randperm(count_seq) | |
all_motions = torch.cat(self.gtmotion_embeddings, | |
axis=0).cpu()[shuffle_idx, :] | |
all_gttexts = torch.cat(self.gttext_embeddings, | |
axis=0).cpu()[shuffle_idx, :] | |
all_predtexts = torch.cat(self.predtext_embeddings, | |
axis=0).cpu()[shuffle_idx, :] | |
print("Computing metrics...") | |
# Compute r-precision | |
assert count_seq >= self.R_size | |
top_k_mat = torch.zeros((self.top_k, )) | |
for i in range(count_seq // self.R_size): | |
# [bs=32, 1*256] | |
group_texts = all_predtexts[i * self.R_size:(i + 1) * self.R_size] | |
# [bs=32, 1*256] | |
group_motions = all_motions[i * self.R_size:(i + 1) * self.R_size] | |
# [bs=32, 32] | |
dist_mat = euclidean_distance_matrix(group_texts, | |
group_motions).nan_to_num() | |
# print(dist_mat[:5]) | |
self.Matching_score += dist_mat.trace() | |
argsmax = torch.argsort(dist_mat, dim=1) | |
top_k_mat += calculate_top_k(argsmax, top_k=self.top_k).sum(axis=0) | |
R_count = count_seq // self.R_size * self.R_size | |
metrics["Matching_score"] = self.Matching_score / R_count | |
for k in range(self.top_k): | |
metrics[f"R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count | |
# Compute r-precision with gt | |
assert count_seq >= self.R_size | |
top_k_mat = torch.zeros((self.top_k, )) | |
for i in range(count_seq // self.R_size): | |
# [bs=32, 1*256] | |
group_texts = all_gttexts[i * self.R_size:(i + 1) * self.R_size] | |
# [bs=32, 1*256] | |
group_motions = all_motions[i * self.R_size:(i + 1) * self.R_size] | |
# [bs=32, 32] | |
dist_mat = euclidean_distance_matrix(group_texts, | |
group_motions).nan_to_num() | |
# match score | |
self.gt_Matching_score += dist_mat.trace() | |
argsmax = torch.argsort(dist_mat, dim=1) | |
top_k_mat += calculate_top_k(argsmax, top_k=self.top_k).sum(axis=0) | |
metrics["gt_Matching_score"] = self.gt_Matching_score / R_count | |
for k in range(self.top_k): | |
metrics[f"gt_R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count | |
# NLP metrics | |
scores = self.nlg_evaluator(predictions=self.pred_texts, | |
references=self.gt_texts) | |
for k in range(1, self.bleu_k + 1): | |
metrics[f"Bleu_{str(k)}"] = torch.tensor(scores[f'bleu_{str(k)}'], | |
device=self.device) | |
metrics["ROUGE_L"] = torch.tensor(scores["rouge"]["rougeL"], | |
device=self.device) | |
metrics["CIDEr"] = torch.tensor(scores["cider"]['score'],device=self.device) | |
# Bert metrics | |
P, R, F1 = score_bert(self.pred_texts, | |
self.gt_texts, | |
lang='en', | |
rescale_with_baseline=True, | |
idf=True, | |
device=self.device, | |
verbose=False) | |
metrics["Bert_F1"] = F1.mean() | |
# Reset | |
self.reset() | |
self.gt_texts = [] | |
self.pred_texts = [] | |
return {**metrics} | |
def update(self, | |
feats_ref: Tensor, | |
pred_texts: List[str], | |
gt_texts: List[str], | |
lengths: List[int], | |
word_embs: Tensor = None, | |
pos_ohot: Tensor = None, | |
text_lengths: Tensor = None): | |
self.count += sum(lengths) | |
self.count_seq += len(lengths) | |
# motion encoder | |
m_lens = torch.tensor(lengths, device=feats_ref.device) | |
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() | |
feats_ref = feats_ref[align_idx] | |
m_lens = m_lens[align_idx] | |
m_lens = torch.div(m_lens, | |
self.cfg.DATASET.HUMANML3D.UNIT_LEN, | |
rounding_mode="floor") | |
ref_mov = self.t2m_moveencoder(feats_ref[..., :-4]).detach() | |
m_lens = m_lens // self.unit_length | |
ref_emb = self.t2m_motionencoder(ref_mov, m_lens) | |
gtmotion_embeddings = torch.flatten(ref_emb, start_dim=1).detach() | |
self.gtmotion_embeddings.append(gtmotion_embeddings) | |
# text encoder | |
gttext_emb = self.t2m_textencoder(word_embs, pos_ohot, | |
text_lengths)[align_idx] | |
gttext_embeddings = torch.flatten(gttext_emb, start_dim=1).detach() | |
predtext_emb = self._get_text_embeddings(pred_texts)[align_idx] | |
predtext_embeddings = torch.flatten(predtext_emb, start_dim=1).detach() | |
self.gttext_embeddings.append(gttext_embeddings) | |
self.predtext_embeddings.append(predtext_embeddings) | |
self.pred_texts.extend(pred_texts) | |
self.gt_texts.extend(gt_texts) | |