Spaces:
Sleeping
Sleeping
import numpy as np | |
import scipy.linalg | |
import torch | |
from torch import linalg | |
import sys | |
def l2_norm(x1, x2, dim): | |
return torch.linalg.vector_norm(x1 - x2, ord=2, dim=dim) | |
def variance(x, T, dim): | |
mean = x.mean(dim) | |
out = (x - mean)**2 | |
out = out.sum(dim) | |
return out / (T - 1) | |
def sqrtm(input): | |
m = input.detach().cpu().numpy().astype(np.float64_) | |
sqrtm = torch.from_numpy(scipy.linalg.sqrtm(m)).to(input) | |
return sqrtm | |
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train | |
def euclidean_distance_matrix(matrix1, matrix2): | |
""" | |
Params: | |
-- matrix1: N1 x D | |
-- matrix2: N2 x D | |
Returns: | |
-- dist: N1 x N2 | |
dist[i, j] == distance(matrix1[i], matrix2[j]) | |
""" | |
assert matrix1.shape[1] == matrix2.shape[1] | |
d1 = -2 * torch.mm(matrix1, matrix2.T) # shape (num_test, num_train) | |
d2 = torch.sum(torch.square(matrix1), axis=1, | |
keepdims=True) # shape (num_test, 1) | |
d3 = torch.sum(torch.square(matrix2), axis=1) # shape (num_train, ) | |
dists = torch.sqrt(d1 + d2 + d3) # broadcasting | |
return dists | |
def euclidean_distance_matrix_np(matrix1, matrix2): | |
""" | |
Params: | |
-- matrix1: N1 x D | |
-- matrix2: N2 x D | |
Returns: | |
-- dist: N1 x N2 | |
dist[i, j] == distance(matrix1[i], matrix2[j]) | |
""" | |
assert matrix1.shape[1] == matrix2.shape[1] | |
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) | |
d2 = np.sum(np.square(matrix1), axis=1, | |
keepdims=True) # shape (num_test, 1) | |
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) | |
dists = np.sqrt(d1 + d2 + d3) # broadcasting | |
return dists | |
def calculate_top_k(mat, top_k): | |
size = mat.shape[0] | |
gt_mat = (torch.unsqueeze(torch.arange(size), | |
1).to(mat.device).repeat_interleave(size, 1)) | |
bool_mat = mat == gt_mat | |
correct_vec = False | |
top_k_list = [] | |
for i in range(top_k): | |
# print(correct_vec, bool_mat[:, i]) | |
correct_vec = correct_vec | bool_mat[:, i] | |
# print(correct_vec) | |
top_k_list.append(correct_vec[:, None]) | |
top_k_mat = torch.cat(top_k_list, dim=1) | |
return top_k_mat | |
def calculate_activation_statistics(activations): | |
""" | |
Params: | |
-- activation: num_samples x dim_feat | |
Returns: | |
-- mu: dim_feat | |
-- sigma: dim_feat x dim_feat | |
""" | |
activations = activations.cpu().numpy() | |
mu = np.mean(activations, axis=0) | |
sigma = np.cov(activations, rowvar=False) | |
return mu, sigma | |
def calculate_activation_statistics_np(activations): | |
""" | |
Params: | |
-- activation: num_samples x dim_feat | |
Returns: | |
-- mu: dim_feat | |
-- sigma: dim_feat x dim_feat | |
""" | |
mu = np.mean(activations, axis=0) | |
cov = np.cov(activations, rowvar=False) | |
return mu, cov | |
# def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
# """Numpy implementation of the Frechet Distance. | |
# The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
# and X_2 ~ N(mu_2, C_2) is | |
# d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
# Stable version by Dougal J. Sutherland. | |
# Params: | |
# -- mu1 : Numpy array containing the activations of a layer of the | |
# inception net (like returned by the function 'get_predictions') | |
# for generated samples. | |
# -- mu2 : The sample mean over activations, precalculated on an | |
# representative data set. | |
# -- sigma1: The covariance matrix over activations for generated samples. | |
# -- sigma2: The covariance matrix over activations, precalculated on an | |
# representative data set. | |
# Returns: | |
# -- : The Frechet Distance. | |
# """ | |
# mu1 = torch.atleast_1d(mu1) | |
# mu2 = torch.atleast_1d(mu2) | |
# sigma1 = torch.atleast_2d(sigma1) | |
# sigma2 = torch.atleast_2d(sigma2) | |
# assert mu1.shape == mu2.shape, \ | |
# 'Training and test mean vectors have different lengths' | |
# assert sigma1.shape == sigma2.shape, \ | |
# 'Training and test covariances have different dimensions' | |
# diff = mu1 - mu2 | |
# # Product might be almost singular | |
# # covmean, _ = sqrtm(sigma1.dot(sigma2), disp=False) | |
# covmean = sqrtm(torch.mm(sigma1,sigma2)) | |
# if not torch.isfinite(covmean).all(): | |
# msg = ('fid calculation produces singular product; ' | |
# 'adding %s to diagonal of cov estimates') % eps | |
# print(msg) | |
# offset = torch.eye(sigma1.shape[0]) * eps | |
# # covmean = sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# covmean = sqrtm(torch.mm(sigma1+ offset,sigma2+ offset)) | |
# # Numerical error might give slight imaginary component | |
# if torch.is_complex(covmean): | |
# if not torch.allclose(torch.diagonal(covmean).imag, 0, atol=1e-3): | |
# m = torch.max(torch.abs(covmean.imag)) | |
# raise ValueError('Imaginary component {}'.format(m)) | |
# covmean = covmean.real | |
# tr_covmean = torch.trace(covmean) | |
# return (diff.dot(diff) + torch.trace(sigma1) + | |
# torch.trace(sigma2) - 2 * tr_covmean) | |
def calculate_frechet_distance_np(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert (mu1.shape == mu2.shape | |
), "Training and test mean vectors have different lengths" | |
assert (sigma1.shape == sigma2.shape | |
), "Training and test covariances have different dimensions" | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ("fid calculation produces singular product; " | |
"adding %s to diagonal of cov estimates") % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError("Imaginary component {}".format(m)) | |
# print("Imaginary component {}".format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return diff.dot(diff) + np.trace(sigma1) + np.trace( | |
sigma2) - 2 * tr_covmean | |
def calculate_diversity(activation, diversity_times): | |
assert len(activation.shape) == 2 | |
assert activation.shape[0] > diversity_times | |
num_samples = activation.shape[0] | |
first_indices = np.random.choice(num_samples, | |
diversity_times, | |
replace=False) | |
second_indices = np.random.choice(num_samples, | |
diversity_times, | |
replace=False) | |
dist = linalg.norm(activation[first_indices] - activation[second_indices], | |
axis=1) | |
return dist.mean() | |
def calculate_diversity_np(activation, diversity_times): | |
assert len(activation.shape) == 2 | |
assert activation.shape[0] > diversity_times | |
num_samples = activation.shape[0] | |
first_indices = np.random.choice(num_samples, | |
diversity_times, | |
replace=False) | |
second_indices = np.random.choice(num_samples, | |
diversity_times, | |
replace=False) | |
dist = scipy.linalg.norm(activation[first_indices] - | |
activation[second_indices], | |
axis=1) | |
return dist.mean() | |
def calculate_multimodality_np(activation, multimodality_times): | |
assert len(activation.shape) == 3 | |
assert activation.shape[1] > multimodality_times | |
num_per_sent = activation.shape[1] | |
first_dices = np.random.choice(num_per_sent, | |
multimodality_times, | |
replace=False) | |
second_dices = np.random.choice(num_per_sent, | |
multimodality_times, | |
replace=False) | |
dist = scipy.linalg.norm(activation[:, first_dices] - | |
activation[:, second_dices], | |
axis=2) | |
return dist.mean() | |
# motion reconstructions metrics | |
def batch_compute_similarity_transform_torch(S1, S2): | |
""" | |
Computes a similarity transform (sR, t) that takes | |
a set of 3D points S1 (3 x N) closest to a set of 3D points S2, | |
where R is an 3x3 rotation matrix, t 3x1 translation, s scale. | |
i.e. solves the orthogonal Procrutes problem. | |
""" | |
transposed = False | |
if S1.shape[0] != 3 and S1.shape[0] != 2: | |
S1 = S1.permute(0, 2, 1) | |
S2 = S2.permute(0, 2, 1) | |
transposed = True | |
assert S2.shape[1] == S1.shape[1] | |
# 1. Remove mean. | |
mu1 = S1.mean(axis=-1, keepdims=True) | |
mu2 = S2.mean(axis=-1, keepdims=True) | |
X1 = S1 - mu1 | |
X2 = S2 - mu2 | |
# 2. Compute variance of X1 used for scale. | |
var1 = torch.sum(X1**2, dim=1).sum(dim=1) | |
# 3. The outer product of X1 and X2. | |
K = X1.bmm(X2.permute(0, 2, 1)) | |
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are | |
# singular vectors of K. | |
U, s, V = torch.svd(K) | |
# Construct Z that fixes the orientation of R to get det(R)=1. | |
Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0) | |
Z = Z.repeat(U.shape[0], 1, 1) | |
Z[:, -1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0, 2, 1)))) | |
# Construct R. | |
R = V.bmm(Z.bmm(U.permute(0, 2, 1))) | |
# 5. Recover scale. | |
scale = torch.cat([torch.trace(x).unsqueeze(0) for x in R.bmm(K)]) / var1 | |
# 6. Recover translation. | |
t = mu2 - (scale.unsqueeze(-1).unsqueeze(-1) * (R.bmm(mu1))) | |
# 7. Error: | |
S1_hat = scale.unsqueeze(-1).unsqueeze(-1) * R.bmm(S1) + t | |
if transposed: | |
S1_hat = S1_hat.permute(0, 2, 1) | |
return S1_hat, (scale, R, t) | |
def compute_mpjpe(preds, | |
target, | |
valid_mask=None, | |
pck_joints=None, | |
sample_wise=True): | |
""" | |
Mean per-joint position error (i.e. mean Euclidean distance) | |
often referred to as "Protocol #1" in many papers. | |
""" | |
assert preds.shape == target.shape, print(preds.shape, | |
target.shape) # BxJx3 | |
mpjpe = torch.norm(preds - target, p=2, dim=-1) # BxJ | |
if pck_joints is None: | |
if sample_wise: | |
mpjpe_seq = ((mpjpe * valid_mask.float()).sum(-1) / | |
valid_mask.float().sum(-1) | |
if valid_mask is not None else mpjpe.mean(-1)) | |
else: | |
mpjpe_seq = mpjpe[valid_mask] if valid_mask is not None else mpjpe | |
return mpjpe_seq | |
else: | |
mpjpe_pck_seq = mpjpe[:, pck_joints] | |
return mpjpe_pck_seq | |
def align_by_parts(joints, align_inds=None): | |
if align_inds is None: | |
return joints | |
pelvis = joints[:, align_inds].mean(1) | |
return joints - torch.unsqueeze(pelvis, dim=1) | |
def calc_mpjpe(preds, target, align_inds=[0], sample_wise=True, trans=None): | |
# Expects BxJx3 | |
valid_mask = target[:, :, 0] != -2.0 | |
# valid_mask = torch.BoolTensor(target[:, :, 0].shape) | |
if align_inds is not None: | |
preds_aligned = align_by_parts(preds, align_inds=align_inds) | |
if trans is not None: | |
preds_aligned += trans | |
target_aligned = align_by_parts(target, align_inds=align_inds) | |
else: | |
preds_aligned, target_aligned = preds, target | |
mpjpe_each = compute_mpjpe(preds_aligned, | |
target_aligned, | |
valid_mask=valid_mask, | |
sample_wise=sample_wise) | |
return mpjpe_each | |
def calc_accel(preds, target): | |
""" | |
Mean joint acceleration error | |
often referred to as "Protocol #1" in many papers. | |
""" | |
assert preds.shape == target.shape, print(preds.shape, | |
target.shape) # BxJx3 | |
assert preds.dim() == 3 | |
# Expects BxJx3 | |
# valid_mask = torch.BoolTensor(target[:, :, 0].shape) | |
accel_gt = target[:-2] - 2 * target[1:-1] + target[2:] | |
accel_pred = preds[:-2] - 2 * preds[1:-1] + preds[2:] | |
normed = torch.linalg.norm(accel_pred - accel_gt, dim=-1) | |
accel_seq = normed.mean(1) | |
return accel_seq | |
def calc_pampjpe(preds, target, sample_wise=True, return_transform_mat=False): | |
# Expects BxJx3 | |
target, preds = target.float(), preds.float() | |
# extracting the keypoints that all samples have valid annotations | |
# valid_mask = (target[:, :, 0] != -2.).sum(0) == len(target) | |
# preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(preds[:, valid_mask], target[:, valid_mask]) | |
# pa_mpjpe_each = compute_mpjpe(preds_tranformed, target[:, valid_mask], sample_wise=sample_wise) | |
preds_tranformed, PA_transform = batch_compute_similarity_transform_torch( | |
preds, target) | |
pa_mpjpe_each = compute_mpjpe(preds_tranformed, | |
target, | |
sample_wise=sample_wise) | |
if return_transform_mat: | |
return pa_mpjpe_each, PA_transform | |
else: | |
return pa_mpjpe_each | |
# from action2motion | |
def calculate_diversity_multimodality(activations, | |
labels, | |
num_labels, | |
diversity_times=200, | |
multimodality_times=20): | |
labels = labels.long() | |
num_motions = activations.shape[0] # len(labels) | |
diversity = 0 | |
first_indices = np.random.randint(0, num_motions, diversity_times) | |
second_indices = np.random.randint(0, num_motions, diversity_times) | |
for first_idx, second_idx in zip(first_indices, second_indices): | |
diversity += torch.dist(activations[first_idx, :], | |
activations[second_idx, :]) | |
diversity /= diversity_times | |
multimodality = 0 | |
label_quotas = np.zeros(num_labels) | |
label_quotas[labels.unique( | |
)] = multimodality_times # if a label does not appear in batch, its quota remains zero | |
while np.any(label_quotas > 0): | |
# print(label_quotas) | |
first_idx = np.random.randint(0, num_motions) | |
first_label = labels[first_idx] | |
if not label_quotas[first_label]: | |
continue | |
second_idx = np.random.randint(0, num_motions) | |
second_label = labels[second_idx] | |
while first_label != second_label: | |
second_idx = np.random.randint(0, num_motions) | |
second_label = labels[second_idx] | |
label_quotas[first_label] -= 1 | |
first_activation = activations[first_idx, :] | |
second_activation = activations[second_idx, :] | |
multimodality += torch.dist(first_activation, second_activation) | |
multimodality /= (multimodality_times * num_labels) | |
return diversity, multimodality | |
def calculate_fid(statistics_1, statistics_2): | |
return calculate_frechet_distance_np(statistics_1[0], statistics_1[1], | |
statistics_2[0], statistics_2[1]) | |
# from: https://github.com/abdulfatir/gan-metrics-pytorch/blob/master/kid_score.py | |
def polynomial_mmd_averages(codes_g, | |
codes_r, | |
n_subsets=50, | |
subset_size=1000, | |
ret_var=True, | |
output=sys.stdout, | |
**kernel_args): | |
m = min(codes_g.shape[0], codes_r.shape[0]) | |
mmds = np.zeros(n_subsets) | |
if ret_var: | |
vars = np.zeros(n_subsets) | |
choice = np.random.choice | |
replace = subset_size < len(codes_g) | |
for i in range(n_subsets): | |
g = codes_g[choice(len(codes_g), subset_size, replace=replace)] | |
r = codes_r[choice(len(codes_r), subset_size, replace=replace)] | |
o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var) | |
if ret_var: | |
mmds[i], vars[i] = o | |
else: | |
mmds[i] = o | |
return (mmds, vars) if ret_var else mmds | |
def polynomial_mmd(codes_g, | |
codes_r, | |
degree=3, | |
gamma=None, | |
coef0=1, | |
var_at_m=None, | |
ret_var=True): | |
from sklearn.metrics.pairwise import polynomial_kernel | |
# use k(x, y) = (gamma <x, y> + coef0)^degree | |
# default gamma is 1 / dim | |
X = codes_g | |
Y = codes_r | |
K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0) | |
K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0) | |
K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0) | |
return _mmd2_and_variance(K_XX, | |
K_XY, | |
K_YY, | |
var_at_m=var_at_m, | |
ret_var=ret_var) | |
def _mmd2_and_variance(K_XX, | |
K_XY, | |
K_YY, | |
unit_diagonal=False, | |
mmd_est='unbiased', | |
block_size=1024, | |
var_at_m=None, | |
ret_var=True): | |
# based on | |
# https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py | |
# but changed to not compute the full kernel matrix at once | |
m = K_XX.shape[0] | |
assert K_XX.shape == (m, m) | |
assert K_XY.shape == (m, m) | |
assert K_YY.shape == (m, m) | |
if var_at_m is None: | |
var_at_m = m | |
# Get the various sums of kernels that we'll use | |
# Kts drop the diagonal, but we don't need to compute them explicitly | |
if unit_diagonal: | |
diag_X = diag_Y = 1 | |
sum_diag_X = sum_diag_Y = m | |
sum_diag2_X = sum_diag2_Y = m | |
else: | |
diag_X = np.diagonal(K_XX) | |
diag_Y = np.diagonal(K_YY) | |
sum_diag_X = diag_X.sum() | |
sum_diag_Y = diag_Y.sum() | |
sum_diag2_X = _sqn(diag_X) | |
sum_diag2_Y = _sqn(diag_Y) | |
Kt_XX_sums = K_XX.sum(axis=1) - diag_X | |
Kt_YY_sums = K_YY.sum(axis=1) - diag_Y | |
K_XY_sums_0 = K_XY.sum(axis=0) | |
K_XY_sums_1 = K_XY.sum(axis=1) | |
Kt_XX_sum = Kt_XX_sums.sum() | |
Kt_YY_sum = Kt_YY_sums.sum() | |
K_XY_sum = K_XY_sums_0.sum() | |
if mmd_est == 'biased': | |
mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m) + (Kt_YY_sum + sum_diag_Y) / | |
(m * m) - 2 * K_XY_sum / (m * m)) | |
else: | |
assert mmd_est in {'unbiased', 'u-statistic'} | |
mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1)) | |
if mmd_est == 'unbiased': | |
mmd2 -= 2 * K_XY_sum / (m * m) | |
else: | |
mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m - 1)) | |
if not ret_var: | |
return mmd2 | |
Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X | |
Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y | |
K_XY_2_sum = _sqn(K_XY) | |
dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1) | |
dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0) | |
m1 = m - 1 | |
m2 = m - 2 | |
zeta1_est = ( | |
1 / (m * m1 * m2) * | |
(_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum) - 1 / | |
(m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2) + 1 / (m * m * m1) * | |
(_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum) - | |
2 / m**4 * K_XY_sum**2 - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX) + | |
2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum) | |
zeta2_est = (1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum) - 1 / (m * m1)**2 * | |
(Kt_XX_sum**2 + Kt_YY_sum**2) + 2 / (m * m) * K_XY_2_sum - | |
2 / m**4 * K_XY_sum**2 - 4 / (m * m * m1) * | |
(dot_XX_XY + dot_YY_YX) + 4 / (m**3 * m1) * | |
(Kt_XX_sum + Kt_YY_sum) * K_XY_sum) | |
var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est + | |
2 / (var_at_m * (var_at_m - 1)) * zeta2_est) | |
return mmd2, var_est | |
def _sqn(arr): | |
flat = np.ravel(arr) | |
return flat.dot(flat) | |
def calculate_kid(real_activations, generated_activations): | |
kid_values = polynomial_mmd_averages(real_activations, | |
generated_activations, | |
n_subsets=100) | |
results = (kid_values[0].mean(), kid_values[0].std()) | |
return results | |