Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class AdaptiveInstanceNorm1d(nn.Module): | |
def __init__(self, num_features, eps=1e-5, momentum=0.1): | |
super(AdaptiveInstanceNorm1d, self).__init__() | |
self.num_features = num_features | |
self.eps = eps | |
self.momentum = momentum | |
self.weight = None | |
self.bias = None | |
self.register_buffer('running_mean', torch.zeros(num_features)) | |
self.register_buffer('running_var', torch.ones(num_features)) | |
def forward(self, x, direct_weighting=False, no_std=False): | |
assert self.weight is not None and \ | |
self.bias is not None, "Please assign AdaIN weight first" | |
# (bs, nfeats, nframe) <= (nframe, bs, nfeats) | |
x = x.permute(1,2,0) | |
b, c = x.size(0), x.size(1) # batch size & channels | |
running_mean = self.running_mean.repeat(b) | |
running_var = self.running_var.repeat(b) | |
# self.weight = torch.ones_like(self.weight) | |
if direct_weighting: | |
x_reshaped = x.contiguous().view(b * c) | |
if no_std: | |
out = x_reshaped + self.bias | |
else: | |
out = x_reshaped.mul(self.weight) + self.bias | |
out = out.view(b, c, *x.size()[2:]) | |
else: | |
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) | |
out = F.batch_norm( | |
x_reshaped, running_mean, running_var, self.weight, self.bias, | |
True, self.momentum, self.eps) | |
out = out.view(b, c, *x.size()[2:]) | |
# (nframe, bs, nfeats) <= (bs, nfeats, nframe) | |
out = out.permute(2,0,1) | |
return out | |
def __repr__(self): | |
return self.__class__.__name__ + '(' + str(self.num_features) + ')' | |
def assign_adain_params(adain_params, model): | |
# assign the adain_params to the AdaIN layers in model | |
for m in model.modules(): | |
if m.__class__.__name__ == "AdaptiveInstanceNorm1d": | |
mean = adain_params[: , : m.num_features] | |
std = adain_params[: , m.num_features: 2 * m.num_features] | |
m.bias = mean.contiguous().view(-1) | |
m.weight = std.contiguous().view(-1) | |
if adain_params.size(1) > 2 * m.num_features: | |
adain_params = adain_params[: , 2 * m.num_features:] | |
def get_num_adain_params(model): | |
# return the number of AdaIN parameters needed by the model | |
num_adain_params = 0 | |
for m in model.modules(): | |
if m.__class__.__name__ == "AdaptiveInstanceNorm1d": | |
num_adain_params += 2 * m.num_features | |
return num_adain_params | |