Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
DETR Transformer class. | |
Copy-paste from torch.nn.Transformer with modifications: | |
* positional encodings are passed in MHattention | |
* extra LN at the end of encoder is removed | |
* decoder returns a stack of activations from all decoding layers | |
""" | |
import copy | |
from typing import List, Optional | |
from numpy import block | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
class SkipTransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.d_model = encoder_layer.d_model | |
self.num_layers = num_layers | |
self.norm = norm | |
assert num_layers % 2 == 1 | |
num_block = (num_layers-1)//2 | |
self.input_blocks = _get_clones(encoder_layer, num_block) | |
self.middle_block = _get_clone(encoder_layer) | |
self.output_blocks = _get_clones(encoder_layer, num_block) | |
self.linear_blocks = _get_clones(nn.Linear(2*self.d_model, self.d_model), num_block) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
x = src | |
xs = [] | |
for module in self.input_blocks: | |
x = module(x, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
xs.append(x) | |
x = self.middle_block(x, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
for (module, linear) in zip(self.output_blocks, self.linear_blocks): | |
x = torch.cat([x, xs.pop()], dim=-1) | |
x = linear(x) | |
x = module(x, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
class SkipTransformerDecoder(nn.Module): | |
def __init__(self, decoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.d_model = decoder_layer.d_model | |
self.num_layers = num_layers | |
self.norm = norm | |
assert num_layers % 2 == 1 | |
num_block = (num_layers-1)//2 | |
self.input_blocks = _get_clones(decoder_layer, num_block) | |
self.middle_block = _get_clone(decoder_layer) | |
self.output_blocks = _get_clones(decoder_layer, num_block) | |
self.linear_blocks = _get_clones(nn.Linear(2*self.d_model, self.d_model), num_block) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
x = tgt | |
xs = [] | |
for module in self.input_blocks: | |
x = module(x, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
xs.append(x) | |
x = self.middle_block(x, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
for (module, linear) in zip(self.output_blocks, self.linear_blocks): | |
x = torch.cat([x, xs.pop()], dim=-1) | |
x = linear(x) | |
x = module(x, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
class Transformer(nn.Module): | |
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, | |
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False, | |
return_intermediate_dec=False): | |
super().__init__() | |
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
decoder_norm = nn.LayerNorm(d_model) | |
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, | |
return_intermediate=return_intermediate_dec) | |
self._reset_parameters() | |
self.d_model = d_model | |
self.nhead = nhead | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, src, mask, query_embed, pos_embed): | |
# flatten NxCxHxW to HWxNxC | |
bs, c, h, w = src.shape | |
src = src.flatten(2).permute(2, 0, 1) | |
pos_embed = pos_embed.flatten(2).permute(2, 0, 1) | |
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) | |
mask = mask.flatten(1) | |
tgt = torch.zeros_like(query_embed) | |
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) | |
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, | |
pos=pos_embed, query_pos=query_embed) | |
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
for layer in self.layers: | |
output = layer(output, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(nn.Module): | |
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): | |
super().__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.return_intermediate = return_intermediate | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
output = tgt | |
intermediate = [] | |
for layer in self.layers: | |
output = layer(output, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
if self.return_intermediate: | |
intermediate.append(self.norm(output)) | |
if self.norm is not None: | |
output = self.norm(output) | |
if self.return_intermediate: | |
intermediate.pop() | |
intermediate.append(output) | |
if self.return_intermediate: | |
return torch.stack(intermediate) | |
return output.unsqueeze(0) | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.d_model = d_model | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
class TransformerDecoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.d_model = d_model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(tgt, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward_pre(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
def _get_clone(module): | |
return copy.deepcopy(module) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def build_transformer(args): | |
return Transformer( | |
d_model=args.hidden_dim, | |
dropout=args.dropout, | |
nhead=args.nheads, | |
dim_feedforward=args.dim_feedforward, | |
num_encoder_layers=args.enc_layers, | |
num_decoder_layers=args.dec_layers, | |
normalize_before=args.pre_norm, | |
return_intermediate_dec=True, | |
) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |