File size: 24,057 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
from typing import List, Union
import numpy as np
import math
import time
import heapq
import torch
from torch import Tensor, nn
from torch.distributions.distribution import Distribution
from transformers import AutoModelForSeq2SeqLM, T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer, GPT2LMHeadModel, GPT2Tokenizer
import random
from typing import Optional
from .tools.token_emb import NewTokenEmb


class MLM(nn.Module):

    def __init__(
        self,
        model_path: str,
        model_type: str = "t5",
        stage: str = "lm_pretrain",
        new_token_type: str = "insert",
        motion_codebook_size: int = 512,
        framerate: float = 20.0,
        down_t: int = 4,
        predict_ratio: float = 0.2,
        inbetween_ratio: float = 0.25,
        max_length: int = 256,
        lora: bool = False,
        quota_ratio: float = 0.5,
        noise_density: float = 0.15,
        mean_noise_span_length: int = 3,
        **kwargs,
    ) -> None:

        super().__init__()

        # Parameters
        self.m_codebook_size = motion_codebook_size
        self.max_length = max_length
        self.framerate = framerate
        self.down_t = down_t
        self.predict_ratio = predict_ratio
        self.inbetween_ratio = inbetween_ratio
        self.noise_density = noise_density
        self.mean_noise_span_length = mean_noise_span_length
        self.quota_ratio = quota_ratio
        self.stage = stage

        # Instantiate language model
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=True)
        if model_type == "t5":
            self.language_model = T5ForConditionalGeneration.from_pretrained(
                model_path)
            self.lm_type = 'encdec'
        elif model_type == "gpt2":
            self.language_model = GPT2LMHeadModel.from_pretrained(model_path)
            self.lm_type = 'dec'
        else:
            raise ValueError("type must be either seq2seq or conditional")

        if self.lm_type == 'dec':
            self.tokenizer.pad_token = self.tokenizer.eos_token

        # Add motion tokens
        self.tokenizer.add_tokens(
            [f'<motion_id_{i}>' for i in range(self.m_codebook_size + 3)])

        if new_token_type == "insert":
            self.language_model.resize_token_embeddings(len(self.tokenizer))
        elif new_token_type == "mlp":
            shared = NewTokenEmb(self.language_model.shared,
                                 self.m_codebook_size + 3)
            # lm_head = NewTokenEmb(self.language_model.lm_head,
            #   self.m_codebook_size + 3)
            self.language_model.resize_token_embeddings(len(self.tokenizer))
            self.language_model.shared = shared
            # self.language_model.lm_head = lm_head

        # Lora
        if lora:
            from peft import LoraConfig, TaskType, get_peft_model, get_peft_model_state_dict
            from peft.utils.other import fsdp_auto_wrap_policy
            peft_config = LoraConfig(
                bias="none",
                task_type="CAUSAL_LM",
                #  inference_mode=False,
                r=8,
                lora_alpha=16,
                lora_dropout=0.05)
            self.language_model = get_peft_model(self.language_model,
                                                 peft_config)

    def forward(self, texts: List[str], motion_tokens: Tensor,
                lengths: List[int], tasks: dict):
        if self.lm_type == 'encdec':
            return self.forward_encdec(texts, motion_tokens, lengths, tasks)
        elif self.lm_type == 'dec':
            return self.forward_dec(texts, motion_tokens, lengths, tasks)
        else:
            raise NotImplementedError("Only conditional_multitask supported")

    def forward_encdec(
        self,
        texts: List[str],
        motion_tokens: Tensor,
        lengths: List[int],
        tasks: dict,
    ):

        # Tensor to string
        motion_strings = self.motion_token_to_string(motion_tokens, lengths)

        # Supervised or unsupervised
        # condition = random.choice(
        #     ['text', 'motion', 'supervised', 'supervised', 'supervised'])
        condition = random.choice(['supervised', 'supervised', 'supervised'])

        if condition == 'text':
            inputs = texts
            outputs = texts
        elif condition == 'motion':
            inputs = motion_strings
            outputs = motion_strings
        else:
            inputs, outputs = self.template_fulfill(tasks, lengths,
                                                    motion_strings, texts)

        # Tokenize
        source_encoding = self.tokenizer(inputs,
                                         padding='max_length',
                                         max_length=self.max_length,
                                         truncation=True,
                                         return_attention_mask=True,
                                         add_special_tokens=True,
                                         return_tensors="pt")

        source_attention_mask = source_encoding.attention_mask.to(
            motion_tokens.device)
        source_input_ids = source_encoding.input_ids.to(motion_tokens.device)

        if condition in ['text', 'motion']:
            batch_size, expandend_input_length = source_input_ids.shape
            mask_indices = np.asarray([
                self.random_spans_noise_mask(expandend_input_length)
                for i in range(batch_size)
            ])
            target_mask = ~mask_indices
            input_ids_sentinel = self.create_sentinel_ids(
                mask_indices.astype(np.int8))
            target_sentinel = self.create_sentinel_ids(
                target_mask.astype(np.int8))

            labels_input_ids = self.filter_input_ids(source_input_ids,
                                                     target_sentinel)
            source_input_ids = self.filter_input_ids(source_input_ids,
                                                     input_ids_sentinel)

        else:
            target_inputs = self.tokenizer(outputs,
                                           padding='max_length',
                                           max_length=self.max_length,
                                           truncation=True,
                                           return_attention_mask=True,
                                           add_special_tokens=True,
                                           return_tensors="pt")

            labels_input_ids = target_inputs.input_ids.to(motion_tokens.device)
            lables_attention_mask = target_inputs.attention_mask.to(
                motion_tokens.device)

        labels_input_ids[labels_input_ids == 0] = -100
        outputs = self.language_model(
            input_ids=source_input_ids,
            attention_mask=source_attention_mask
            if condition == 'supervised' else None,
            labels=labels_input_ids,
            decoder_attention_mask=lables_attention_mask
            if condition == 'supervised' else None,
        )

        return outputs

    def forward_dec(
        self,
        texts: List[str],
        motion_tokens: Tensor,
        lengths: List[int],
        tasks: dict,
    ):
        self.tokenizer.padding_side = "right"

        # Tensor to string
        motion_strings = self.motion_token_to_string(motion_tokens, lengths)

        # Supervised or unsupervised
        condition = random.choice(
            ['text', 'motion', 'supervised', 'supervised', 'supervised'])

        if condition == 'text':
            labels = texts
        elif condition == 'motion':
            labels = motion_strings
        else:
            inputs, outputs = self.template_fulfill(tasks, lengths,
                                                    motion_strings, texts)
            labels = []
            for i in range(len(inputs)):
                labels.append(inputs[i] + ' \n ' + outputs[i] +
                              self.tokenizer.eos_token)

        # Tokenize
        inputs = self.tokenizer(labels,
                                padding='max_length',
                                max_length=self.max_length,
                                truncation=True,
                                return_attention_mask=True,
                                return_tensors="pt")

        labels_input_ids = inputs.input_ids.to(motion_tokens.device)
        lables_attention_mask = inputs.attention_mask.to(motion_tokens.device)

        # print(labels_input_ids[0:5])

        outputs = self.language_model(input_ids=labels_input_ids,
                                      attention_mask=lables_attention_mask,
                                      labels=inputs["input_ids"])

        return outputs

    def generate_direct(self,
                        texts: List[str],
                        max_length: int = 256,
                        num_beams: int = 1,
                        do_sample: bool = True,
                        bad_words_ids: List[int] = None):

        # Device
        self.device = self.language_model.device

        # Tokenize
        if self.lm_type == 'dec':
            texts = [text + " \n " for text in texts]

        source_encoding = self.tokenizer(texts,
                                         padding='max_length',
                                         max_length=self.max_length,
                                         truncation=True,
                                         return_attention_mask=True,
                                         add_special_tokens=True,
                                         return_tensors="pt")

        source_input_ids = source_encoding.input_ids.to(self.device)
        source_attention_mask = source_encoding.attention_mask.to(self.device)

        if self.lm_type == 'encdec':
            outputs = self.language_model.generate(
                source_input_ids,
                max_length=max_length,
                num_beams=num_beams,
                do_sample=do_sample,
                bad_words_ids=bad_words_ids,
            )
        elif self.lm_type == 'dec':
            outputs = self.language_model.generate(
                input_ids=source_input_ids,
                attention_mask=source_attention_mask,
                pad_token_id=self.tokenizer.pad_token_id,
                do_sample=do_sample,
                max_new_tokens=max_length)
            self.tokenizer.padding_side = 'left'

        outputs_string = self.tokenizer.batch_decode(outputs,
                                                     skip_special_tokens=True)

        print(texts[:2])
        print(outputs_string[:2])

        outputs_tokens, cleaned_text = self.motion_string_to_token(
            outputs_string)

        return outputs_tokens, cleaned_text

    def generate_conditional(self,
                             texts: Optional[List[str]] = None,
                             motion_tokens: Optional[Tensor] = None,
                             lengths: Optional[List[int]] = None,
                             task: str = "t2m",
                             with_len: bool = False,
                             stage: str = 'train',
                             tasks: dict = None):

        self.device = self.language_model.device

        if task in ["t2m", "m2m", "pred", "inbetween"]:

            if task == "t2m":
                assert texts is not None
                motion_strings = [''] * len(texts)
                if not with_len:
                    if tasks is None:
                        tasks = [{
                            'input':
                            ['Generate motion: <Caption_Placeholder>'],
                            'output': ['']
                        }] * len(texts)

                    lengths = [0] * len(texts)
                else:
                    tasks = [{
                        'input': [
                            'Generate motion with <Frame_Placeholder> frames: <Caption_Placeholder>'
                        ],
                        'output': ['']
                    }] * len(texts)
                    
            elif task == "pred":
                assert motion_tokens is not None and lengths is not None
                texts = [''] * len(lengths)
                tasks = [{
                    'input': ['Predict motion: <Motion_Placeholder_s1>'],
                    'output': ['']
                }] * len(lengths)

                motion_strings_old = self.motion_token_to_string(
                    motion_tokens, lengths)
                motion_strings = []
                for i, length in enumerate(lengths):
                    split = length // 5
                    motion_strings.append(
                        '>'.join(motion_strings_old[i].split('>')[:split]) +
                        '>')

            elif task == "inbetween":
                assert motion_tokens is not None and lengths is not None
                texts = [''] * len(lengths)
                tasks = [{
                    'input': [
                        "Complete the masked motion: <Motion_Placeholder_Masked>"
                    ],
                    'output': ['']
                }] * len(lengths)
                motion_strings = self.motion_token_to_string(
                    motion_tokens, lengths)

            inputs, outputs = self.template_fulfill(tasks, lengths,
                                                    motion_strings, texts,
                                                    stage)

            outputs_tokens, cleaned_text = self.generate_direct(inputs,
                                                                max_length=128,
                                                                num_beams=1,
                                                                do_sample=True)

            return outputs_tokens

        elif task == "m2t":
            assert motion_tokens is not None and lengths is not None

            motion_strings = self.motion_token_to_string(
                motion_tokens, lengths)

            if not with_len:
                tasks = [{
                    'input': ['Generate text: <Motion_Placeholder>'],
                    'output': ['']
                }] * len(lengths)
            else:
                tasks = [{
                    'input': [
                        'Generate text with <Frame_Placeholder> frames: <Motion_Placeholder>'
                    ],
                    'output': ['']
                }] * len(lengths)

            texts = [''] * len(lengths)

            inputs, outputs = self.template_fulfill(tasks, lengths,
                                                    motion_strings, texts)
            outputs_tokens, cleaned_text = self.generate_direct(
                inputs,
                max_length=40,
                num_beams=1,
                do_sample=False,
                # bad_words_ids=self.bad_words_ids
            )
            return cleaned_text

    def motion_token_to_string(self, motion_token: Tensor, lengths: List[int]):
        motion_string = []
        for i in range(len(motion_token)):
            motion_i = motion_token[i].cpu(
            ) if motion_token[i].device.type == 'cuda' else motion_token[i]
            motion_list = motion_i.tolist()[:lengths[i]]
            motion_string.append(
                (f'<motion_id_{self.m_codebook_size}>' +
                 ''.join([f'<motion_id_{int(i)}>' for i in motion_list]) +
                 f'<motion_id_{self.m_codebook_size + 1}>'))
        return motion_string

    def motion_token_list_to_string(self, motion_token: Tensor):
        motion_string = []
        for i in range(len(motion_token)):
            motion_i = motion_token[i].cpu(
            ) if motion_token[i].device.type == 'cuda' else motion_token[i]
            motion_list = motion_i.tolist()
            motion_string.append(
                (f'<motion_id_{self.m_codebook_size}>' +
                 ''.join([f'<motion_id_{int(i)}>' for i in motion_list]) +
                 f'<motion_id_{self.m_codebook_size + 1}>'))
        return motion_string

    def motion_string_to_token(self, motion_string: List[str]):
        motion_tokens = []
        output_string = []
        for i in range(len(motion_string)):
            string = self.get_middle_str(
                motion_string[i], f'<motion_id_{self.m_codebook_size}>',
                f'<motion_id_{self.m_codebook_size + 1}>')
            string_list = string.split('><')
            token_list = [
                int(i.split('_')[-1].replace('>', ''))
                for i in string_list[1:-1]
            ]
            if len(token_list) == 0:
                token_list = [0]
            token_list_padded = torch.tensor(token_list,
                                             dtype=int).to(self.device)
            motion_tokens.append(token_list_padded)
            output_string.append(motion_string[i].replace(
                string, '<Motion_Placeholder>'))

        return motion_tokens, output_string

    def placeholder_fulfill(self, prompt: str, length: int, motion_string: str,
                            text: str):

        seconds = math.floor(length / self.framerate)
        motion_splited = motion_string.split('>')
        token_length = length / self.down_t
        predict_head = int(token_length * self.predict_ratio + 1)
        masked_head = int(token_length * self.inbetween_ratio + 1)
        masked_tail = int(token_length * (1 - self.inbetween_ratio) + 1)
        
        motion_predict_head = '>'.join(
            motion_splited[:predict_head]
        ) + f'><motion_id_{self.m_codebook_size+1}>'
        motion_predict_last = f'<motion_id_{self.m_codebook_size}>' + '>'.join(
            motion_splited[predict_head:])

        motion_masked = '>'.join(
            motion_splited[:masked_head]
        ) + '>' + f'<motion_id_{self.m_codebook_size+2}>' * (
            masked_tail - masked_head) + '>'.join(motion_splited[masked_tail:])

        if random.random() < self.quota_ratio:
            text = f'\"{text}\"'

        prompt = prompt.replace('<Caption_Placeholder>', text).replace(
            '<Motion_Placeholder>',
            motion_string).replace('<Frame_Placeholder>', f'{length}').replace(
                '<Second_Placeholder>', '%.1f' % seconds).replace(
                    '<Motion_Placeholder_s1>', motion_predict_head).replace(
                        '<Motion_Placeholder_s2>',
                        motion_predict_last).replace(
                            '<Motion_Placeholder_Masked>', motion_masked)

        return prompt

    def template_fulfill(self,
                         tasks,
                         lengths,
                         motion_strings,
                         texts,
                         stage='test'):
        inputs = []
        outputs = []
        for i in range(len(lengths)):
            input_template = random.choice(tasks[i]['input'])
            output_template = random.choice(tasks[i]['output'])
            length = lengths[i]
            inputs.append(
                self.placeholder_fulfill(input_template, length,
                                         motion_strings[i], texts[i]))
            outputs.append(
                self.placeholder_fulfill(output_template, length,
                                         motion_strings[i], texts[i]))

        return inputs, outputs

    def get_middle_str(self, content, startStr, endStr):
        try:
            startIndex = content.index(startStr)
            if startIndex >= 0:
                startIndex += len(startStr)
            endIndex = content.index(endStr)
        except:
            return f'<motion_id_{self.m_codebook_size}><motion_id_0><motion_id_{self.m_codebook_size+1}>'

        return f'<motion_id_{self.m_codebook_size}>' + content[
            startIndex:endIndex] + f'<motion_id_{self.m_codebook_size+1}>'

    def random_spans_noise_mask(self, length):
        # From https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py

        orig_length = length

        num_noise_tokens = int(np.round(length * self.noise_density))
        # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
        num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
        num_noise_spans = int(
            np.round(num_noise_tokens / self.mean_noise_span_length))

        # avoid degeneracy by ensuring positive number of noise spans
        num_noise_spans = max(num_noise_spans, 1)
        num_nonnoise_tokens = length - num_noise_tokens

        # pick the lengths of the noise spans and the non-noise spans
        def _random_segmentation(num_items, num_segments):
            """Partition a sequence of items randomly into non-empty segments.
            Args:
                num_items: an integer scalar > 0
                num_segments: an integer scalar in [1, num_items]
            Returns:
                a Tensor with shape [num_segments] containing positive integers that add
                up to num_items
            """
            mask_indices = np.arange(num_items - 1) < (num_segments - 1)
            np.random.shuffle(mask_indices)
            first_in_segment = np.pad(mask_indices, [[1, 0]])
            segment_id = np.cumsum(first_in_segment)
            # count length of sub segments assuming that list is sorted
            _, segment_length = np.unique(segment_id, return_counts=True)
            return segment_length

        noise_span_lengths = _random_segmentation(num_noise_tokens,
                                                  num_noise_spans)
        nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens,
                                                     num_noise_spans)

        interleaved_span_lengths = np.reshape(
            np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1),
            [num_noise_spans * 2],
        )
        span_starts = np.cumsum(interleaved_span_lengths)[:-1]
        span_start_indicator = np.zeros((length, ), dtype=np.int8)
        span_start_indicator[span_starts] = True
        span_num = np.cumsum(span_start_indicator)
        is_noise = np.equal(span_num % 2, 1)

        return is_noise[:orig_length]

    def create_sentinel_ids(self, mask_indices):
        # From https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_t5_mlm_flax.py
        start_indices = mask_indices - np.roll(mask_indices, 1,
                                               axis=-1) * mask_indices
        start_indices[:, 0] = mask_indices[:, 0]

        sentinel_ids = np.where(start_indices != 0,
                                np.cumsum(start_indices, axis=-1),
                                start_indices)
        sentinel_ids = np.where(sentinel_ids != 0,
                                (len(self.tokenizer) - sentinel_ids), 0)
        sentinel_ids -= mask_indices - start_indices

        return sentinel_ids

    def filter_input_ids(self, input_ids, sentinel_ids):
        # From https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_t5_mlm_flax.py
        batch_size = input_ids.shape[0]

        input_ids_full = np.where(sentinel_ids != 0, sentinel_ids,
                                  input_ids.to('cpu'))

        # input_ids tokens and sentinel tokens are >= 0, tokens < 0 are
        # masked tokens coming after sentinel tokens and should be removed
        input_ids = input_ids_full[input_ids_full >= 0].reshape(
            (batch_size, -1))
        input_ids = np.concatenate(
            [
                input_ids,
                np.full((batch_size, 1),
                        self.tokenizer.eos_token_id,
                        dtype=np.int32),
            ],
            axis=-1,
        )

        input_ids = torch.tensor(input_ids, device=self.device)

        return input_ids