File size: 18,806 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import torch
import numpy as np
from torch.nn import functional as F


def axis_angle_to_quaternion(axis_angle):
    """
    Convert rotations given as axis/angle to quaternions.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = 0.5 * angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles])
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48)
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles],
        dim=-1)
    return quaternions


def quaternion_to_matrix(quaternions):
    """
    Convert rotations given as quaternions to rotation matrices.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


def axis_angle_to_matrix(axis_angle):
    """
    Convert rotations given as axis/angle to rotation matrices.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))


def matrix_of_angles(cos, sin, inv=False, dim=2):
    assert dim in [2, 3]
    sin = -sin if inv else sin
    if dim == 2:
        row1 = torch.stack((cos, -sin), axis=-1)
        row2 = torch.stack((sin, cos), axis=-1)
        return torch.stack((row1, row2), axis=-2)
    elif dim == 3:
        row1 = torch.stack((cos, -sin, 0 * cos), axis=-1)
        row2 = torch.stack((sin, cos, 0 * cos), axis=-1)
        row3 = torch.stack((0 * sin, 0 * cos, 1 + 0 * cos), axis=-1)
        return torch.stack((row1, row2, row3), axis=-2)


def matrot2axisangle(matrots):
    # This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py
    # axisang N x 3
    '''
    :param matrots: N*num_joints*9
    :return: N*num_joints*3
    '''
    import cv2
    batch_size = matrots.shape[0]
    matrots = matrots.reshape([batch_size, -1, 9])
    out_axisangle = []
    for mIdx in range(matrots.shape[0]):
        cur_axisangle = []
        for jIdx in range(matrots.shape[1]):
            a = cv2.Rodrigues(matrots[mIdx,
                                      jIdx:jIdx + 1, :].reshape(3,
                                                                3))[0].reshape(
                                                                    (1, 3))
            cur_axisangle.append(a)

        out_axisangle.append(np.array(cur_axisangle).reshape([1, -1, 3]))
    return np.vstack(out_axisangle)


def axisangle2matrots(axisangle):
    # This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py
    # axisang N x 3
    '''
    :param axisangle: N*num_joints*3
    :return: N*num_joints*9
    '''
    import cv2
    batch_size = axisangle.shape[0]
    axisangle = axisangle.reshape([batch_size, -1, 3])
    out_matrot = []
    for mIdx in range(axisangle.shape[0]):
        cur_axisangle = []
        for jIdx in range(axisangle.shape[1]):
            a = cv2.Rodrigues(axisangle[mIdx, jIdx:jIdx + 1, :].reshape(1,
                                                                        3))[0]
            cur_axisangle.append(a)

        out_matrot.append(np.array(cur_axisangle).reshape([1, -1, 9]))
    return np.vstack(out_matrot)


def batch_rodrigues(axisang):
    # This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37
    # axisang N x 3
    axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1)
    angle = torch.unsqueeze(axisang_norm, -1)
    axisang_normalized = torch.div(axisang, angle)
    angle = angle * 0.5
    v_cos = torch.cos(angle)
    v_sin = torch.sin(angle)

    quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1)
    rot_mat = quat2mat(quat)
    rot_mat = rot_mat.view(rot_mat.shape[0], 9)
    return rot_mat


def quat2mat(quat):
    """
    This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50

    Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [batch_size, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3]
    """
    norm_quat = quat
    norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
                                                             2], norm_quat[:,
                                                                           3]

    batch_size = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w * x, w * y, w * z
    xy, xz, yz = x * y, x * z, y * z

    rotMat = torch.stack([
        w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
        w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
        w2 - x2 - y2 + z2
    ],
                         dim=1).view(batch_size, 3, 3)
    return rotMat


def rotation_matrix_to_angle_axis(rotation_matrix):
    """
    This function is borrowed from https://github.com/kornia/kornia

    Convert 3x4 rotation matrix to Rodrigues vector

    Args:
        rotation_matrix (Tensor): rotation matrix.

    Returns:
        Tensor: Rodrigues vector transformation.

    Shape:
        - Input: :math:`(N, 3, 4)`
        - Output: :math:`(N, 3)`

    Example:
        >>> input = torch.rand(2, 3, 4)  # Nx4x4
        >>> output = tgm.rotation_matrix_to_angle_axis(input)  # Nx3
    """
    if rotation_matrix.shape[1:] == (3, 3):
        rot_mat = rotation_matrix.reshape(-1, 3, 3)
        hom = torch.tensor([0, 0, 1],
                           dtype=torch.float32,
                           device=rotation_matrix.device).reshape(
                               1, 3, 1).expand(rot_mat.shape[0], -1, -1)
        rotation_matrix = torch.cat([rot_mat, hom], dim=-1)

    quaternion = rotation_matrix_to_quaternion(rotation_matrix)
    aa = quaternion_to_angle_axis(quaternion)
    aa[torch.isnan(aa)] = 0.0
    return aa


def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
    """
    This function is borrowed from https://github.com/kornia/kornia

    Convert quaternion vector to angle axis of rotation.

    Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h

    Args:
        quaternion (torch.Tensor): tensor with quaternions.

    Return:
        torch.Tensor: tensor with angle axis of rotation.

    Shape:
        - Input: :math:`(*, 4)` where `*` means, any number of dimensions
        - Output: :math:`(*, 3)`

    Example:
        >>> quaternion = torch.rand(2, 4)  # Nx4
        >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion)  # Nx3
    """
    if not torch.is_tensor(quaternion):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(quaternion)))

    if not quaternion.shape[-1] == 4:
        raise ValueError(
            "Input must be a tensor of shape Nx4 or 4. Got {}".format(
                quaternion.shape))
    # unpack input and compute conversion
    q1: torch.Tensor = quaternion[..., 1]
    q2: torch.Tensor = quaternion[..., 2]
    q3: torch.Tensor = quaternion[..., 3]
    sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3

    sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
    cos_theta: torch.Tensor = quaternion[..., 0]
    two_theta: torch.Tensor = 2.0 * torch.where(
        cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
        torch.atan2(sin_theta, cos_theta))

    k_pos: torch.Tensor = two_theta / sin_theta
    k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
    k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)

    angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
    angle_axis[..., 0] += q1 * k
    angle_axis[..., 1] += q2 * k
    angle_axis[..., 2] += q3 * k
    return angle_axis


def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
    """
    This function is borrowed from https://github.com/kornia/kornia

    Convert 3x4 rotation matrix to 4d quaternion vector

    This algorithm is based on algorithm described in
    https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201

    Args:
        rotation_matrix (Tensor): the rotation matrix to convert.

    Return:
        Tensor: the rotation in quaternion

    Shape:
        - Input: :math:`(N, 3, 4)`
        - Output: :math:`(N, 4)`

    Example:
        >>> input = torch.rand(4, 3, 4)  # Nx3x4
        >>> output = tgm.rotation_matrix_to_quaternion(input)  # Nx4
    """
    if not torch.is_tensor(rotation_matrix):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(rotation_matrix)))

    if len(rotation_matrix.shape) > 3:
        raise ValueError(
            "Input size must be a three dimensional tensor. Got {}".format(
                rotation_matrix.shape))
    if not rotation_matrix.shape[-2:] == (3, 4):
        raise ValueError(
            "Input size must be a N x 3 x 4  tensor. Got {}".format(
                rotation_matrix.shape))

    rmat_t = torch.transpose(rotation_matrix, 1, 2)

    mask_d2 = rmat_t[:, 2, 2] < eps

    mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
    mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]

    t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q0 = torch.stack([
        rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
        rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
    ], -1)
    t0_rep = t0.repeat(4, 1).t()

    t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q1 = torch.stack([
        rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
        t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
    ], -1)
    t1_rep = t1.repeat(4, 1).t()

    t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q2 = torch.stack([
        rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
        rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
    ], -1)
    t2_rep = t2.repeat(4, 1).t()

    t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q3 = torch.stack([
        t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
        rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
    ], -1)
    t3_rep = t3.repeat(4, 1).t()

    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * ~mask_d0_d1
    mask_c2 = ~mask_d2 * mask_d0_nd1
    mask_c3 = ~mask_d2 * ~mask_d0_nd1
    mask_c0 = mask_c0.view(-1, 1).type_as(q0)
    mask_c1 = mask_c1.view(-1, 1).type_as(q1)
    mask_c2 = mask_c2.view(-1, 1).type_as(q2)
    mask_c3 = mask_c3.view(-1, 1).type_as(q3)

    q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
    q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 +  # noqa
                    t2_rep * mask_c2 + t3_rep * mask_c3)  # noqa
    q *= 0.5
    return q


def estimate_translation_np(S,
                            joints_2d,
                            joints_conf,
                            focal_length=5000.,
                            img_size=224.):
    """
    This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py

    Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
    Input:
        S: (25, 3) 3D joint locations
        joints: (25, 3) 2D joint locations and confidence
    Returns:
        (3,) camera translation vector
    """

    num_joints = S.shape[0]
    # focal length
    f = np.array([focal_length, focal_length])
    # optical center
    center = np.array([img_size / 2., img_size / 2.])

    # transformations
    Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
    XY = np.reshape(S[:, 0:2], -1)
    O = np.tile(center, num_joints)
    F = np.tile(f, num_joints)
    weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)

    # least squares
    Q = np.array([
        F * np.tile(np.array([1, 0]), num_joints),
        F * np.tile(np.array([0, 1]), num_joints),
        O - np.reshape(joints_2d, -1)
    ]).T
    c = (np.reshape(joints_2d, -1) - O) * Z - F * XY

    # weighted least squares
    W = np.diagflat(weight2)
    Q = np.dot(W, Q)
    c = np.dot(W, c)

    # square matrix
    A = np.dot(Q.T, Q)
    b = np.dot(Q.T, c)

    # solution
    trans = np.linalg.solve(A, b)

    return trans


def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.):
    """
    This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py

    Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
    Input:
        S: (B, 49, 3) 3D joint locations
        joints: (B, 49, 3) 2D joint locations and confidence
    Returns:
        (B, 3) camera translation vectors
    """

    device = S.device
    # Use only joints 25:49 (GT joints)
    S = S[:, 25:, :].cpu().numpy()
    joints_2d = joints_2d[:, 25:, :].cpu().numpy()
    joints_conf = joints_2d[:, :, -1]
    joints_2d = joints_2d[:, :, :-1]
    trans = np.zeros((S.shape[0], 3), dtype=np.float6432)
    # Find the translation for each example in the batch
    for i in range(S.shape[0]):
        S_i = S[i]
        joints_i = joints_2d[i]
        conf_i = joints_conf[i]
        trans[i] = estimate_translation_np(S_i,
                                           joints_i,
                                           conf_i,
                                           focal_length=focal_length,
                                           img_size=img_size)
    return torch.from_numpy(trans).to(device)


def rot6d_to_rotmat_spin(x):
    """Convert 6D rotation representation to 3x3 rotation matrix.
    Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
    Input:
        (B,6) Batch of 6-D rotation representations
    Output:
        (B,3,3) Batch of corresponding rotation matrices
    """
    x = x.view(-1, 3, 2)
    a1 = x[:, :, 0]
    a2 = x[:, :, 1]
    b1 = F.normalize(a1)
    b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)

    # inp = a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1
    # denom = inp.pow(2).sum(dim=1).sqrt().unsqueeze(-1) + 1e-8
    # b2 = inp / denom

    b3 = torch.cross(b1, b2)
    return torch.stack((b1, b2, b3), dim=-1)


def rot6d_to_rotmat(x):
    x = x.view(-1, 3, 2)

    # Normalize the first vector
    b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6)

    dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True)
    # Compute the second vector by finding the orthogonal complement to it
    b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6)

    # Finish building the basis by taking the cross product
    b3 = torch.cross(b1, b2, dim=1)
    rot_mats = torch.stack([b1, b2, b3], dim=-1)

    return rot_mats


import mGPT.utils.rotation_conversions as rotation_conversions


def rot6d(x_rotations, pose_rep):
    time, njoints, feats = x_rotations.shape

    # Compute rotations (convert only masked sequences output)
    if pose_rep == "rotvec":
        rotations = rotation_conversions.axis_angle_to_matrix(x_rotations)
    elif pose_rep == "rotmat":
        rotations = x_rotations.view(njoints, 3, 3)
    elif pose_rep == "rotquat":
        rotations = rotation_conversions.quaternion_to_matrix(x_rotations)
    elif pose_rep == "rot6d":
        rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations)
    else:
        raise NotImplementedError("No geometry for this one.")

    rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations)
    return rotations_6d


def rot6d_batch(x_rotations, pose_rep):
    nsamples, time, njoints, feats = x_rotations.shape

    # Compute rotations (convert only masked sequences output)
    if pose_rep == "rotvec":
        rotations = rotation_conversions.axis_angle_to_matrix(x_rotations)
    elif pose_rep == "rotmat":
        rotations = x_rotations.view(-1, njoints, 3, 3)
    elif pose_rep == "rotquat":
        rotations = rotation_conversions.quaternion_to_matrix(x_rotations)
    elif pose_rep == "rot6d":
        rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations)
    else:
        raise NotImplementedError("No geometry for this one.")

    rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations)
    return rotations_6d


def rot6d_to_rotvec_batch(pose):
    # nsamples, time, njoints, feats = rot6d.shape
    bs, nfeats = pose.shape
    rot6d = pose.reshape(bs, 24, 6)
    rotations = rotation_conversions.rotation_6d_to_matrix(rot6d)
    rotvec = rotation_conversions.matrix_to_axis_angle(rotations)
    return rotvec.reshape(bs, 24 * 3)