Spaces:
Sleeping
Sleeping
File size: 5,697 Bytes
4409449 dbb6927 8554568 4409449 dbb6927 4409449 dbb6927 4409449 dbb6927 8554568 4409449 dbb6927 b625c80 dbb6927 b625c80 dbb6927 b625c80 dbb6927 8554568 b625c80 dbb6927 8554568 b625c80 8554568 dbb6927 b625c80 dbb6927 b625c80 4409449 dbb6927 4409449 dbb6927 b625c80 dbb6927 b625c80 dbb6927 8554568 4409449 dbb6927 b625c80 8554568 b625c80 dbb6927 b625c80 dbb6927 b625c80 dbb6927 b625c80 dbb6927 b625c80 8554568 dbb6927 4409449 dbb6927 4409449 dbb6927 4409449 8554568 dbb6927 4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
import glob
import pickle
import pyrender
import trimesh
import smplx
from pathlib import Path
from shapely import geometry
from smplx import SMPL as _SMPL
from smplx.utils import SMPLOutput as ModelOutput
from scipy.spatial.transform.rotation import Rotation as RRR
class Renderer:
"""
Renderer used for visualizing the SMPL model
Code adapted from https://github.com/vchoutas/smplify-x
"""
def __init__(self, vertices, focal_length=5000, img_res=(224,224), faces=None):
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0],
viewport_height=img_res[1],
point_size=2.0)
self.focal_length = focal_length
self.camera_center = [img_res[0] // 2, img_res[1] // 2]
self.faces = faces
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
self.rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
minx, miny, minz = vertices.min(axis=(0, 1))
maxx, maxy, maxz = vertices.max(axis=(0, 1))
minx = minx - 0.5
maxx = maxx + 0.5
minz = minz - 0.5
maxz = maxz + 0.5
floor = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
self.floor = trimesh.creation.extrude_polygon(floor, 1e-5)
self.floor.visual.face_colors = [0, 0, 0, 0.2]
self.floor.apply_transform(self.rot)
self.floor_pose =np.array([[ 1, 0, 0, 0],
[ 0, np.cos(np.pi / 2), -np.sin(np.pi / 2), miny],
[ 0, np.sin(np.pi / 2), np.cos(np.pi / 2), 0],
[ 0, 0, 0, 1]])
c = -np.pi / 6
self.camera_pose = [[ 1, 0, 0, (minx+maxx)/2],
[ 0, np.cos(c), -np.sin(c), 1.5],
[ 0, np.sin(c), np.cos(c), max(4, minz+(1.5-miny)*2, (maxx-minx))],
[ 0, 0, 0, 1]
]
def __call__(self, vertices, camera_translation):
floor_render = pyrender.Mesh.from_trimesh(self.floor, smooth=False)
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.1,
alphaMode='OPAQUE',
baseColorFactor=(0.658, 0.214, 0.0114, 0.2))
mesh = trimesh.Trimesh(vertices, self.faces)
mesh.apply_transform(self.rot)
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
light = pyrender.DirectionalLight(color=[1,1,1], intensity=350)
spot_l = pyrender.SpotLight(color=np.ones(3), intensity=300.0,
innerConeAngle=np.pi/16, outerConeAngle=np.pi/6)
point_l = pyrender.PointLight(color=np.ones(3), intensity=300.0)
scene = pyrender.Scene(bg_color=(1.,1.,1.,0.8),ambient_light=(0.4, 0.4, 0.4))
scene.add(floor_render, pose=self.floor_pose)
scene.add(mesh, 'mesh')
light_pose = np.eye(4)
light_pose[:3, 3] = np.array([0, -1, 1])
scene.add(light, pose=light_pose)
light_pose[:3, 3] = np.array([0, 1, 1])
scene.add(light, pose=light_pose)
light_pose[:3, 3] = np.array([1, 1, 2])
scene.add(light, pose=light_pose)
scene.add(camera, pose=self.camera_pose)
flags = pyrender.RenderFlags.RGBA | pyrender.RenderFlags.SHADOWS_DIRECTIONAL
color, rend_depth = self.renderer.render(scene, flags=flags)
return color
class SMPLRender():
def __init__(self, SMPL_MODEL_DIR):
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
# self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False).to(self.device)
self.smpl = smplx.create(Path(SMPL_MODEL_DIR).parent, model_type="smpl", gender="neutral", ext="npz", batch_size=1).to(self.device)
self.pred_camera_t = []
self.focal_length = 110
def init_renderer(self, res, smpl_param, is_headroot=False):
poses = smpl_param['pred_pose']
pred_rotmats = []
for pose in poses:
if pose.size==72:
pose = pose.reshape(-1,3)
pose = RRR.from_rotvec(pose).as_matrix()
pose = pose.reshape(1,24,3,3)
pred_rotmats.append(torch.from_numpy(pose.astype(np.float32)[None]).to(self.device))
pred_rotmat = torch.cat(pred_rotmats, dim=0)
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(1, 10).astype(np.float32)).to(self.device)
pred_root = torch.tensor(smpl_param['pred_root'].reshape(-1, 3).astype(np.float32),device=self.device)
smpl_output = self.smpl(betas=pred_betas, body_pose=pred_rotmat[:, 1:],transl=pred_root, global_orient=pred_rotmat[:, :1], pose2rot=False)
self.vertices = smpl_output.vertices.detach().cpu().numpy()
pred_root = pred_root[0]
if is_headroot:
pred_root = pred_root - smpl_output.joints[0,12].detach().cpu().numpy()
self.pred_camera_t.append(pred_root)
self.renderer = Renderer(vertices=self.vertices, focal_length=self.focal_length,
img_res=(res[1], res[0]), faces=self.smpl.faces)
def render(self, index):
renderImg = self.renderer(self.vertices[index, ...], self.pred_camera_t)
return renderImg
|