Spaces:
Sleeping
Sleeping
File size: 18,409 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import numpy as np
import os
import random
import torch
import time
from mGPT.config import instantiate_from_config
from os.path import join as pjoin
from mGPT.losses.mgpt import GPTLosses
from mGPT.models.base import BaseModel
from .base import BaseModel
import json
import mGPT.render.matplot.plot_3d_global as plot_3d
class MotionGPT(BaseModel):
"""
Stage 1 Motion Tokenizer
Stage 2 Motion-language pretrian
Stage 3 Motion-language instruction tuning
"""
def __init__(self,
cfg,
datamodule,
lm,
motion_vae,
codebook_size=512,
stage='vae',
debug=True,
condition='text',
task='t2m',
metrics_dict=['TM2TMetrics'],
**kwargs):
self.save_hyperparameters(ignore='datamodule', logger=False)
self.datamodule = datamodule
super().__init__()
# Instantiate motion tokenizer
if motion_vae != None:
self.vae = instantiate_from_config(motion_vae)
# Instantiate motion-language model
self.lm = instantiate_from_config(lm)
# Freeze the motion tokenizer for lm training
if 'lm' in self.hparams.stage:
self.vae.training = False
for p in self.vae.parameters():
p.requires_grad = False
# Instantiate the losses
self._losses = torch.nn.ModuleDict({
split: GPTLosses(cfg, self.hparams.stage, self.datamodule.njoints)
for split in ["losses_train", "losses_test", "losses_val"]
})
# Data transform
self.feats2joints = datamodule.feats2joints
# Count codebook frequency
self.codePred = []
self.codeFrequency = torch.zeros((self.hparams.codebook_size, ))
def forward(self, batch, task="t2m"):
texts = batch["text"]
lengths_ref = batch["length"]
# Forward
# texts = ['Generate motion: ' + text for text in texts]
outputs, output_texts = self.lm.generate_direct(texts, do_sample=True)
# Motion Decode
feats_rst_lst = []
lengths = []
max_len = 0
for i in range(len(texts)):
if task == "pred":
motion = self.vae.decode(
torch.cat((batch["motion"][i], outputs[i])))
elif task in ["t2m", "m2t", "inbetween"]:
motion = self.vae.decode(outputs[i])
# motion = self.datamodule.denormalize(motion)
lengths.append(motion.shape[1])
else:
raise NotImplementedError
if motion.shape[1] > max_len:
max_len = motion.shape[1]
if task in ["t2m", "m2t", "pred"]:
feats_rst_lst.append(motion)
elif task == "inbetween":
motion = torch.cat(
(batch["motion_heading"][i][None],
motion[:, lengths_ref[i] // 4:lengths_ref[i] // 4 * 3,
...], batch["motion_tailing"][i][None]),
dim=1)
feats_rst_lst.append(motion)
feats_rst = torch.zeros(
(len(feats_rst_lst), max_len, motion.shape[-1])).to(self.device)
# padding and concat
for i in range(len(feats_rst_lst)):
feats_rst[i, :feats_rst_lst[i].shape[1], ...] = feats_rst_lst[i]
# Recover joints for evaluation
joints_rst = self.feats2joints(feats_rst)
# return set
outputs = {
"texts": output_texts,
"feats": feats_rst,
"joints": joints_rst,
"length": lengths
}
return outputs
def train_lm_forward(self, batch):
tokens_ref = batch["motion"]
texts = batch["text"]
lengths = batch["length"]
tasks = batch["tasks"]
all_captions = batch['all_captions']
if self.hparams.condition == 'caption':
texts = [random.choice(all_captions[i]) for i in range(len(texts))]
# LLM Forward
outputs = self.lm(texts, tokens_ref, lengths, tasks)
# outputs = self.t2m_gpt.generate(texts)
return {'outputs': outputs}
@torch.no_grad()
def val_t2m_forward(self, batch):
feats_ref = batch["motion"]
texts = batch["text"]
lengths = batch["length"]
tasks = None
if self.trainer.datamodule.is_mm:
texts = texts * self.hparams.cfg.METRIC.MM_NUM_REPEATS
feats_ref = feats_ref.repeat_interleave(
self.hparams.cfg.METRIC.MM_NUM_REPEATS, dim=0)
lengths = lengths * self.hparams.cfg.METRIC.MM_NUM_REPEATS
instructions = pjoin(self.datamodule.hparams.data_root,
'template_instructions.json')
instructions = json.load(open(instructions, 'r'))
tasks = [instructions["Text-to-Motion"]["caption"]] * len(texts)
if self.hparams.condition == 'caption':
tasks = [{
'input': ['<Caption_Placeholder>'],
'output': ['']
}] * len(texts)
if self.hparams.cfg.DATASET.TASK_PATH:
instructions = pjoin(self.hparams.cfg.DATASET.TASK_PATH)
instructions = json.load(open(instructions, 'r'))
tasks = [instructions["Text-to-Motion"]["t2m"]] * len(texts)
min_len = lengths.copy()
# Forward
outputs = self.lm.generate_conditional(texts,
lengths=lengths,
stage='test',
tasks=tasks)
# Motion Decode
feats_rst = torch.zeros_like(feats_ref)
for i in range(len(texts)):
outputs[i] = torch.clamp(outputs[i],
0,
self.hparams.codebook_size - 1,
out=None)
if len(outputs[i]) > 1:
motion = self.vae.decode(outputs[i])
else:
motion = torch.zeros_like(feats_ref[i:i + 1, ...])
min_len[i] = min(motion.shape[1], lengths[i])
# Cut Motion
feats_rst[i:i + 1, :min_len[i], ...] = motion[:, :lengths[i]]
# Recover joints for evaluation
joints_ref = self.feats2joints(feats_ref)
joints_rst = self.feats2joints(feats_rst)
# Renorm for evaluation
feats_ref = self.datamodule.renorm4t2m(feats_ref)
feats_rst = self.datamodule.renorm4t2m(feats_rst)
# return set
rs_set = {
"m_ref": feats_ref,
"m_rst": feats_rst,
"joints_ref": joints_ref,
"joints_rst": joints_rst,
"length": min_len
# "length": lengths
}
return rs_set
@torch.no_grad()
def val_m2t_forward(self, batch):
self.hparams.metrics_dict = []
feats_ref = batch["motion"]
texts = batch["text"]
lengths = batch["length"]
all_captions = batch['all_captions']
# Motion Encode
motion_tokens = []
lengths_tokens = []
for i in range(len(feats_ref)):
motion_token, _ = self.vae.encode(feats_ref[i:i + 1])
motion_tokens.append(motion_token[0])
lengths_tokens.append(motion_token.shape[1])
# Forward
outputs = self.lm.generate_conditional(motion_tokens=motion_tokens,
lengths=lengths_tokens,
task="m2t",
stage='test')
# return set
rs_set = {
"m_ref": feats_ref,
"t_ref": all_captions,
# "t_ref": texts,
"t_pred": outputs,
"length": lengths
}
return rs_set
@torch.no_grad()
def val_m2m_forward(self, batch, task="pred"):
feats_ref = batch["motion"]
lengths = batch["length"]
# Motion Encode
motion_tokens = []
lengths_tokens = []
for i in range(len(feats_ref)):
motion_token, _ = self.vae.encode(feats_ref[i:i + 1])
motion_tokens.append(motion_token[0])
# Forward
outputs = self.lm.generate_conditional(motion_tokens=motion_tokens,
lengths=lengths,
task=task,
stage='test')
# Motion Decode
feats_rst = torch.zeros_like(feats_ref)
min_len = lengths.copy()
for i in range(len(lengths)):
outputs[i] = torch.clamp(outputs[i],
0,
self.hparams.codebook_size - 1,
out=None)
if len(outputs[i]) > 1:
motion = self.vae.decode(outputs[i])
else:
motion = torch.zeros_like(feats_ref[i:i + 1, ...])
min_len[i] = min(motion.shape[1], lengths[i])
# Cut Motion
feats_rst[i:i + 1, :min_len[i], ...] = motion[:, :lengths[i]]
# Recover joints for evaluation
joints_ref = self.feats2joints(feats_ref)
joints_rst = self.feats2joints(feats_rst)
# Renorm for evaluation
feats_ref = self.datamodule.renorm4t2m(feats_ref)
feats_rst = self.datamodule.renorm4t2m(feats_rst)
# return set
rs_set = {
"m_ref": feats_ref,
"m_rst": feats_rst,
"joints_ref": joints_ref,
"joints_rst": joints_rst,
"length": min_len
# "length": lengths
}
return rs_set
def train_vae_forward(self, batch):
# batch detach
feats_ref = batch["motion"]
joints_ref = self.feats2joints(feats_ref)
# motion encode & decode
feats_rst, loss_commit, perplexity = self.vae(feats_ref)
joints_rst = self.feats2joints(feats_rst)
# return set
rs_set = {
"m_ref": feats_ref,
"joints_ref": joints_ref,
"m_rst": feats_rst,
"joints_rst": joints_rst,
"loss_commit": loss_commit,
"perplexity": perplexity,
}
return rs_set
@torch.no_grad()
def val_vae_forward(self, batch, split="train"):
# Detach batch
feats_ref = batch["motion"]
lengths = batch["length"]
# Repeat for multimodal evaluation
if self.trainer.datamodule.is_mm:
feats_ref = feats_ref.repeat_interleave(
self.hparams.cfg.METRIC.MM_NUM_REPEATS, dim=0)
lengths = lengths * self.hparams.cfg.METRIC.MM_NUM_REPEATS
# Motion encode & decode
feats_rst = torch.zeros_like(feats_ref)
for i in range(len(feats_ref)):
if lengths[i] == 0:
continue
feats_pred, _, _ = self.vae(feats_ref[i:i + 1, :lengths[i]])
feats_rst[i:i + 1, :feats_pred.shape[1], :] = feats_pred
code_pred, _ = self.vae.encode(feats_ref[i:i + 1, :lengths[i]])
# codeFre_pred = torch.bincount(code_pred[0],
# minlength=self.hparams.codebook_size).to(
# self.codeFrequency.device)
# self.codePred.append(code_pred[0])
# self.codeFrequency += codeFre_pred
# np.save('../memData/results/codeFrequency.npy',
# self.codeFrequency.cpu().numpy())
# Recover joints for evaluation
joints_ref = self.feats2joints(feats_ref)
joints_rst = self.feats2joints(feats_rst)
# Renorm for evaluation
feats_ref = self.datamodule.renorm4t2m(feats_ref)
feats_rst = self.datamodule.renorm4t2m(feats_rst)
# Return set
rs_set = {
"m_ref": feats_ref,
"joints_ref": joints_ref,
"m_rst": feats_rst,
"joints_rst": joints_rst,
"length": lengths,
}
return rs_set
def allsplit_step(self, split: str, batch, batch_idx):
# Compute the losses
loss = None
if self.hparams.stage == "vae" and split in ["train", "val"]:
rs_set = self.train_vae_forward(batch)
loss = self._losses['losses_' + split].update(rs_set)
elif self.hparams.stage in ["lm_instruct", "lm_pretrain"
] and split in ["train"]:
rs_set = self.train_lm_forward(batch)
loss = self._losses['losses_' + split].update(rs_set)
elif self.hparams.stage == 'lm_rl' and split in ['train']:
rs_set = self.train_rl_forward(batch)
loss = None
# Compute the metrics
if split in ["val", "test"]:
if self.hparams.stage == "vae":
rs_set = self.val_vae_forward(batch, split)
elif self.hparams.stage in ["lm_instruct", "lm_pretrain", "lm_rl"]:
if self.hparams.task == "t2m":
rs_set = self.val_t2m_forward(batch)
elif self.hparams.task == "m2t":
rs_set = self.val_m2t_forward(batch)
elif self.hparams.task in ["m2m", "pred", "inbetween"]:
rs_set = self.val_m2m_forward(batch, self.hparams.task)
if self.hparams.task not in ["m2t"]:
# MultiModality evaluation sperately
if self.trainer.datamodule.is_mm:
metrics_dicts = ['MMMetrics']
else:
metrics_dicts = self.hparams.metrics_dict
if self.hparams.task not in ['pred', 'inbetween']:
metrics_dicts.remove('PredMetrics')
for metric in metrics_dicts:
lengths = batch['length']
if metric == "TemosMetric":
getattr(self.metrics,
metric).update(rs_set["joints_rst"],
rs_set["joints_ref"], lengths)
elif metric == "TM2TMetrics":
if self.hparams.stage in [
"lm_instruct", "lm_pretrain", "lm_rl"
]:
word_embs = batch['word_embs']
pos_ohot = batch['pos_ohot']
text_lengths = batch['text_len']
if self.trainer.datamodule.is_mm:
word_embs = word_embs.repeat_interleave(
self.hparams.cfg.METRIC.MM_NUM_REPEATS,
dim=0)
pos_ohot = pos_ohot.repeat_interleave(
self.hparams.cfg.METRIC.MM_NUM_REPEATS,
dim=0)
text_lengths = text_lengths.repeat_interleave(
self.hparams.cfg.METRIC.MM_NUM_REPEATS,
dim=0)
else:
word_embs = None
pos_ohot = None
text_lengths = None
getattr(self.metrics, metric).update(
feats_ref=rs_set["m_ref"],
feats_rst=rs_set["m_rst"],
lengths_ref=lengths,
lengths_rst=rs_set['length'],
word_embs=word_embs,
pos_ohot=pos_ohot,
text_lengths=text_lengths,
)
elif metric == "UncondMetrics":
getattr(self.metrics, metric).update(
recmotion_embeddings=rs_set["lat_rm"],
gtmotion_embeddings=rs_set["lat_m"],
lengths=lengths,
)
elif metric == "MRMetrics":
getattr(self.metrics,
metric).update(rs_set["joints_rst"],
rs_set["joints_ref"], lengths)
elif metric == "PredMetrics":
getattr(self.metrics,
metric).update(rs_set["joints_rst"],
rs_set["joints_ref"], lengths)
elif metric == "MMMetrics":
# pass
getattr(self.metrics,
metric).update(rs_set["m_rst"],
rs_set['length'])
else:
raise TypeError(f"Not support this metric {metric}")
elif self.hparams.task == "m2t" and self.hparams.stage in [
"lm_instruct", "lm_pretrain", "lm_rl"
]:
self.hparams.metrics_dict = metrics_dicts = ['M2TMetrics']
for metric in metrics_dicts:
if metric == "M2TMetrics":
getattr(self.metrics, metric).update(
feats_ref=rs_set["m_ref"],
pred_texts=rs_set["t_pred"],
gt_texts=batch["all_captions"],
lengths=rs_set['length'],
word_embs=batch["word_embs"],
pos_ohot=batch["pos_ohot"],
text_lengths=batch["text_len"],
)
# return forward output rather than loss during test
if split in ["test"]:
if self.hparams.task == "t2m":
return rs_set["joints_rst"], rs_set["length"], rs_set[
"joints_ref"]
# pass
elif self.hparams.task == "m2t":
return rs_set["t_pred"], batch["length"]
# return batch["length"]
return loss
|