Spaces:
Sleeping
Sleeping
File size: 9,938 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
from torch import Tensor
# Took from https://github.com/joeynmt/joeynmt/blob/fb66afcbe1beef9acd59283bcc084c4d4c1e6343/joeynmt/transformer_layers.py
# pylint: disable=arguments-differ
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from "Attention is All You Need"
Implementation modified from OpenNMT-py.
https://github.com/OpenNMT/OpenNMT-py
"""
def __init__(self, num_heads: int, size: int, dropout: float = 0.1):
"""
Create a multi-headed attention layer.
:param num_heads: the number of heads
:param size: model size (must be divisible by num_heads)
:param dropout: probability of dropping a unit
"""
super().__init__()
assert size % num_heads == 0
self.head_size = head_size = size // num_heads
self.model_size = size
self.num_heads = num_heads
self.k_layer = nn.Linear(size, num_heads * head_size)
self.v_layer = nn.Linear(size, num_heads * head_size)
self.q_layer = nn.Linear(size, num_heads * head_size)
self.output_layer = nn.Linear(size, size)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
def forward(self, k: Tensor, v: Tensor, q: Tensor, mask: Tensor = None):
"""
Computes multi-headed attention.
:param k: keys [B, M, D] with M being the sentence length.
:param v: values [B, M, D]
:param q: query [B, M, D]
:param mask: optional mask [B, 1, M] or [B, M, M]
:return:
"""
batch_size = k.size(0)
num_heads = self.num_heads
# project the queries (q), keys (k), and values (v)
k = self.k_layer(k)
v = self.v_layer(v)
q = self.q_layer(q)
# reshape q, k, v for our computation to [batch_size, num_heads, ..]
k = k.view(batch_size, -1, num_heads, self.head_size).transpose(1, 2)
v = v.view(batch_size, -1, num_heads, self.head_size).transpose(1, 2)
q = q.view(batch_size, -1, num_heads, self.head_size).transpose(1, 2)
# compute scores
q = q / math.sqrt(self.head_size)
# batch x num_heads x query_len x key_len
scores = torch.matmul(q, k.transpose(2, 3))
# torch.Size([48, 8, 183, 183])
# apply the mask (if we have one)
# we add a dimension for the heads to it below: [B, 1, 1, M]
if mask is not None:
scores = scores.masked_fill(~mask.unsqueeze(1), float('-inf'))
# apply attention dropout and compute context vectors.
attention = self.softmax(scores)
attention = self.dropout(attention)
# torch.Size([48, 8, 183, 183]) [bs, nheads, time, time] (for decoding)
# v: torch.Size([48, 8, 183, 32]) (32 is 256/8)
# get context vector (select values with attention) and reshape
# back to [B, M, D]
context = torch.matmul(attention, v) # torch.Size([48, 8, 183, 32])
context = context.transpose(1, 2).contiguous().view(
batch_size, -1, num_heads * self.head_size)
# torch.Size([48, 183, 256]) put back to 256 (combine the heads)
output = self.output_layer(context)
# torch.Size([48, 183, 256]): 1 output per time step
return output
# pylint: disable=arguments-differ
class PositionwiseFeedForward(nn.Module):
"""
Position-wise Feed-forward layer
Projects to ff_size and then back down to input_size.
"""
def __init__(self, input_size, ff_size, dropout=0.1):
"""
Initializes position-wise feed-forward layer.
:param input_size: dimensionality of the input.
:param ff_size: dimensionality of intermediate representation
:param dropout:
"""
super().__init__()
self.layer_norm = nn.LayerNorm(input_size, eps=1e-6)
self.pwff_layer = nn.Sequential(
nn.Linear(input_size, ff_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ff_size, input_size),
nn.Dropout(dropout),
)
def forward(self, x):
x_norm = self.layer_norm(x)
return self.pwff_layer(x_norm) + x
# pylint: disable=arguments-differ
class PositionalEncoding(nn.Module):
"""
Pre-compute position encodings (PE).
In forward pass, this adds the position-encodings to the
input for as many time steps as necessary.
Implementation based on OpenNMT-py.
https://github.com/OpenNMT/OpenNMT-py
"""
def __init__(self, size: int = 0, max_len: int = 5000):
"""
Positional Encoding with maximum length max_len
:param size:
:param max_len:
:param dropout:
"""
if size % 2 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(size))
pe = torch.zeros(max_len, size)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp((torch.arange(0, size, 2, dtype=torch.float) *
-(math.log(10000.0) / size)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0) # shape: [1, size, max_len]
super().__init__()
self.register_buffer('pe', pe)
self.dim = size
def forward(self, emb):
"""Embed inputs.
Args:
emb (FloatTensor): Sequence of word vectors
``(seq_len, batch_size, self.dim)``
"""
# Add position encodings
return emb + self.pe[:, :emb.size(1)]
class TransformerEncoderLayer(nn.Module):
"""
One Transformer encoder layer has a Multi-head attention layer plus
a position-wise feed-forward layer.
"""
def __init__(self,
size: int = 0,
ff_size: int = 0,
num_heads: int = 0,
dropout: float = 0.1):
"""
A single Transformer layer.
:param size:
:param ff_size:
:param num_heads:
:param dropout:
"""
super().__init__()
self.layer_norm = nn.LayerNorm(size, eps=1e-6)
self.src_src_att = MultiHeadedAttention(num_heads,
size,
dropout=dropout)
self.feed_forward = PositionwiseFeedForward(size,
ff_size=ff_size,
dropout=dropout)
self.dropout = nn.Dropout(dropout)
self.size = size
# pylint: disable=arguments-differ
def forward(self, x: Tensor, mask: Tensor) -> Tensor:
"""
Forward pass for a single transformer encoder layer.
First applies layer norm, then self attention,
then dropout with residual connection (adding the input to the result),
and then a position-wise feed-forward layer.
:param x: layer input
:param mask: input mask
:return: output tensor
"""
x_norm = self.layer_norm(x)
h = self.src_src_att(x_norm, x_norm, x_norm, mask)
h = self.dropout(h) + x
o = self.feed_forward(h)
return o
class TransformerDecoderLayer(nn.Module):
"""
Transformer decoder layer.
Consists of self-attention, source-attention, and feed-forward.
"""
def __init__(self,
size: int = 0,
ff_size: int = 0,
num_heads: int = 0,
dropout: float = 0.1):
"""
Represents a single Transformer decoder layer.
It attends to the source representation and the previous decoder states.
:param size: model dimensionality
:param ff_size: size of the feed-forward intermediate layer
:param num_heads: number of heads
:param dropout: dropout to apply to input
"""
super().__init__()
self.size = size
self.trg_trg_att = MultiHeadedAttention(num_heads,
size,
dropout=dropout)
self.src_trg_att = MultiHeadedAttention(num_heads,
size,
dropout=dropout)
self.feed_forward = PositionwiseFeedForward(size,
ff_size=ff_size,
dropout=dropout)
self.x_layer_norm = nn.LayerNorm(size, eps=1e-6)
self.dec_layer_norm = nn.LayerNorm(size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# pylint: disable=arguments-differ
def forward(self,
x: Tensor = None,
memory: Tensor = None,
src_mask: Tensor = None,
trg_mask: Tensor = None) -> Tensor:
"""
Forward pass of a single Transformer decoder layer.
:param x: inputs
:param memory: source representations
:param src_mask: source mask
:param trg_mask: target mask (so as to not condition on future steps)
:return: output tensor
"""
# decoder/target self-attention
x_norm = self.x_layer_norm(x) # torch.Size([48, 183, 256])
h1 = self.trg_trg_att(x_norm, x_norm, x_norm, mask=trg_mask)
h1 = self.dropout(h1) + x
# source-target attention
h1_norm = self.dec_layer_norm(
h1) # torch.Size([48, 183, 256]) (same for memory)
h2 = self.src_trg_att(memory, memory, h1_norm, mask=src_mask)
# final position-wise feed-forward layer
o = self.feed_forward(self.dropout(h2) + h1)
return o
|