Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,170 Bytes
e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import torch
from tqdm import tqdm
from typing import List, Optional, Tuple
from models import PipelineWrapper
import gradio as gr
def inversion_forward_process(model: PipelineWrapper,
x0: torch.Tensor,
etas: Optional[float] = None,
prompts: List[str] = [""],
cfg_scales: List[float] = [3.5],
num_inference_steps: int = 50,
numerical_fix: bool = False,
duration: Optional[float] = None,
first_order: bool = False,
save_compute: bool = True,
progress=gr.Progress()) -> Tuple:
if len(prompts) > 1 or prompts[0] != "":
text_embeddings_hidden_states, text_embeddings_class_labels, \
text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
# In the forward negative prompts are not supported currently (TODO)
uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text(
[""], negative=True, save_compute=save_compute, cond_length=text_embeddings_class_labels.shape[1]
if text_embeddings_class_labels is not None else None)
else:
uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text(
[""], negative=True, save_compute=False)
timesteps = model.model.scheduler.timesteps.to(model.device)
variance_noise_shape = model.get_noise_shape(x0, num_inference_steps)
if type(etas) in [int, float]:
etas = [etas]*model.model.scheduler.num_inference_steps
xts = model.sample_xts_from_x0(x0, num_inference_steps=num_inference_steps)
zs = torch.zeros(size=variance_noise_shape, device=model.device)
extra_info = [None] * len(zs)
if timesteps[0].dtype == torch.int64:
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
elif timesteps[0].dtype == torch.float32:
t_to_idx = {float(v): k for k, v in enumerate(timesteps)}
xt = x0
op = tqdm(timesteps, desc="Inverting")
model.setup_extra_inputs(xt, init_timestep=timesteps[0], audio_end_in_s=duration,
save_compute=save_compute and prompts[0] != "")
app_op = progress.tqdm(timesteps, desc="Inverting")
for t, _ in zip(op, app_op):
idx = num_inference_steps - t_to_idx[int(t) if timesteps[0].dtype == torch.int64 else float(t)] - 1
# 1. predict noise residual
xt = xts[idx+1][None]
xt_inp = model.model.scheduler.scale_model_input(xt, t)
with torch.no_grad():
if save_compute and prompts[0] != "":
comb_out, _, _ = model.unet_forward(
xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1),
timestep=t,
encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states
], dim=0)
if uncond_embeddings_hidden_states is not None else None,
class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0)
if uncond_embeddings_class_lables is not None else None,
encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask
], dim=0)
if uncond_boolean_prompt_mask is not None else None,
)
out, cond_out = comb_out.sample.chunk(2, dim=0)
else:
out = model.unet_forward(xt_inp, timestep=t,
encoder_hidden_states=uncond_embeddings_hidden_states,
class_labels=uncond_embeddings_class_lables,
encoder_attention_mask=uncond_boolean_prompt_mask)[0].sample
if len(prompts) > 1 or prompts[0] != "":
cond_out = model.unet_forward(
xt_inp,
timestep=t,
encoder_hidden_states=text_embeddings_hidden_states,
class_labels=text_embeddings_class_labels,
encoder_attention_mask=text_embeddings_boolean_prompt_mask)[0].sample
if len(prompts) > 1 or prompts[0] != "":
# # classifier free guidance
noise_pred = out + (cfg_scales[0] * (cond_out - out)).sum(axis=0).unsqueeze(0)
else:
noise_pred = out
# xtm1 = xts[idx+1][None]
xtm1 = xts[idx][None]
z, xtm1, extra = model.get_zs_from_xts(xt, xtm1, noise_pred, t,
eta=etas[idx], numerical_fix=numerical_fix,
first_order=first_order)
zs[idx] = z
# print(f"Fix Xt-1 distance - NORM:{torch.norm(xts[idx] - xtm1):.4g}, MSE:{((xts[idx] - xtm1)**2).mean():.4g}")
xts[idx] = xtm1
extra_info[idx] = extra
if zs is not None:
# zs[-1] = torch.zeros_like(zs[-1])
zs[0] = torch.zeros_like(zs[0])
# zs_cycle[0] = torch.zeros_like(zs[0])
del app_op.iterables[0]
return xt, zs, xts, extra_info
def inversion_reverse_process(model: PipelineWrapper,
xT: torch.Tensor,
tstart: torch.Tensor,
etas: float = 0,
prompts: List[str] = [""],
neg_prompts: List[str] = [""],
cfg_scales: Optional[List[float]] = None,
zs: Optional[List[torch.Tensor]] = None,
duration: Optional[float] = None,
first_order: bool = False,
extra_info: Optional[List] = None,
save_compute: bool = True,
progress=gr.Progress()) -> Tuple[torch.Tensor, torch.Tensor]:
text_embeddings_hidden_states, text_embeddings_class_labels, \
text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
uncond_embeddings_hidden_states, uncond_embeddings_class_lables, \
uncond_boolean_prompt_mask = model.encode_text(neg_prompts,
negative=True,
save_compute=save_compute,
cond_length=text_embeddings_class_labels.shape[1]
if text_embeddings_class_labels is not None else None)
xt = xT[tstart.max()].unsqueeze(0)
if etas is None:
etas = 0
if type(etas) in [int, float]:
etas = [etas]*model.model.scheduler.num_inference_steps
assert len(etas) == model.model.scheduler.num_inference_steps
timesteps = model.model.scheduler.timesteps.to(model.device)
op = tqdm(timesteps[-zs.shape[0]:], desc="Editing")
if timesteps[0].dtype == torch.int64:
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
elif timesteps[0].dtype == torch.float32:
t_to_idx = {float(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
model.setup_extra_inputs(xt, extra_info=extra_info, init_timestep=timesteps[-zs.shape[0]],
audio_end_in_s=duration, save_compute=save_compute)
app_op = progress.tqdm(timesteps[-zs.shape[0]:], desc="Editing")
for it, (t, _) in enumerate(zip(op, app_op)):
idx = model.model.scheduler.num_inference_steps - t_to_idx[
int(t) if timesteps[0].dtype == torch.int64 else float(t)] - \
(model.model.scheduler.num_inference_steps - zs.shape[0] + 1)
xt_inp = model.model.scheduler.scale_model_input(xt, t)
# # Unconditional embedding
with torch.no_grad():
# print(f'xt_inp.shape: {xt_inp.shape}')
# print(f't.shape: {t.shape}')
# print(f'uncond_embeddings_hidden_states.shape: {uncond_embeddings_hidden_states.shape}')
# print(f'uncond_embeddings_class_lables.shape: {uncond_embeddings_class_lables.shape}')
# print(f'uncond_boolean_prompt_mask.shape: {uncond_boolean_prompt_mask.shape}')
# print(f'text_embeddings_hidden_states.shape: {text_embeddings_hidden_states.shape}')
# print(f'text_embeddings_class_labels.shape: {text_embeddings_class_labels.shape}')
# print(f'text_embeddings_boolean_prompt_mask.shape: {text_embeddings_boolean_prompt_mask.shape}')
if save_compute:
comb_out, _, _ = model.unet_forward(
xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1),
timestep=t,
encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states
], dim=0)
if uncond_embeddings_hidden_states is not None else None,
class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0)
if uncond_embeddings_class_lables is not None else None,
encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask
], dim=0)
if uncond_boolean_prompt_mask is not None else None,
)
uncond_out, cond_out = comb_out.sample.chunk(2, dim=0)
else:
uncond_out = model.unet_forward(
xt_inp, timestep=t,
encoder_hidden_states=uncond_embeddings_hidden_states,
class_labels=uncond_embeddings_class_lables,
encoder_attention_mask=uncond_boolean_prompt_mask,
)[0].sample
# Conditional embedding
cond_out = model.unet_forward(
xt_inp,
timestep=t,
encoder_hidden_states=text_embeddings_hidden_states,
class_labels=text_embeddings_class_labels,
encoder_attention_mask=text_embeddings_boolean_prompt_mask,
)[0].sample
z = zs[idx] if zs is not None else None
z = z.unsqueeze(0)
# classifier free guidance
noise_pred = uncond_out + (cfg_scales[0] * (cond_out - uncond_out)).sum(axis=0).unsqueeze(0)
# 2. compute less noisy image and set x_t -> x_t-1
xt = model.reverse_step_with_custom_noise(noise_pred, t, xt, variance_noise=z,
eta=etas[idx], first_order=first_order)
del app_op.iterables[0]
return xt, zs
|